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Abstract.— The possibility that two data sets may have different underlying phylogenetic histories
(such as gene trees that deviate from species trees) has become an important argument against
combining data in phylogenetic analysis. However, two data sets sampled for a large number of
taxa may differ in only part of their histories. This is a realistic scenario and one in which the relative
advantages of combined, separate, and consensus analysis become much less clear. I propose a
simple methodology for dealing with this situation that involves (1) partitioning the available data
to maximize detection of different histories, (2) performing separate analyses of the data sets, and
(3) combining the data but considering questionable or unresolved those parts of the combined
tree that are strongly contested in the separate analyses (and which therefore may have different
histories) until a majority of unlinked data sets support one resolution over another. In support
of this methodology, computer simulations suggest that (1) the accuracy of combined analysis for
recovering the true species phylogeny may exceed that of either of two separately analyzeddata sets
under some conditions, particularly when the mismatch between phylogenetic histories is smalland
the estimates of the underlying histories are imperfect (few characters, high homoplasy, or both) and
(2) combined analysis provides a poor estimate of the species tree in areas of the phylogenies with
different histories but gives an improved estimate in regions that share the samehistory. Thus, when
there is a localized mismatch between the histories of two data sets, the separate, consensus, and
combined analyses may all give unsatisfactory results in certain parts of the phylogeny. Similarly,
approaches that allow data combination only after a global test of heterogeneity will suffer from
the potential failings of either separate or combined analysis, depending on the outcome of the
test. Excision of con�icting taxa is also problematic, in that doing so may obfuscate the position
of con�icting taxa within a larger tree, even when their placement is congruent between data sets.
Application of the proposed methodology to molecular and morphological data sets for Sceloporus
lizards is discussed. [Combined analysis; computer simulation; consensus analysis; phylogenetic
accuracy; Sceloporus; separate analysis.]

A major debate in phylogenetics is
whether or not different data sets should be
analyzed only separately or should be com-
bined (see reviews by de Queiroz et al., 1995;
Miyamoto and Fitch, 1995; Huelsenbeck et
al., 1996). An important contribution to this
debate has been the idea that different data
sets may actually have different underlying
phylogenetic topologies (e.g., Doyle, 1992;
de Queiroz, 1993; Bull et al., 1993). Differ-
ences in phylogenetic histories may be the
result of a deviation of the gene tree from the
species tree for one or more sets of molec-
ular data, which may be caused by paral-
ogy, lineage sorting of ancestral polymor-
phisms, or lateral transfer of genes (or parts
of genes) between species (Doyle, 1992; Bull
et al., 1993; de Queiroz, 1993).

The possibility that data sets may have
different phylogenetic histories has been
considered a strong argument against com-
bining such data sets in phylogenetic analy-

sis (e.g., Bull et al., 1993; de Queiroz, 1993).
Bull et al. (1993:387)went so far as to say that
“no rationalsystematistwould suggest com-
bining genes with different histories to pro-
duce a single reconstruction.”Other authors
have cited a common phylogenetic history
amongdata sets as an importantassumption
of combined analysis (de Queiroz, 1993; de
Queiroz et al., 1995; Hillis, 1995; Miyamoto
and Fitch, 1995).

Under simpli�ed conditions, it is easy
to imagine the dangers of combining data
from genes (data sets) with different histo-
ries. Given a four-taxon tree and data from
two genes for which one gene tree is con-
gruent with the species tree and the other
gene tree is incongruent, the combined anal-
ysis may either recover the true species phy-
logeny or be strongly misled, depending en-
tirely on the number of characters sampled
from each gene (a comparable situation in-
volving long-branch attraction [Felsenstein,
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1978] was simulated by Bull et al., 1993).
Yet, this simple example may have limited
relevance to phylogenetic problems encoun-
tered in the real world. Most systematists
typically examine more than four taxa for
a given phylogenetic analysis, and most of
the recent molecular or combined-data stud-
ies sample many times this number. Em-
pirical studies invoking different histories
to explain incongruence of data sets (e.g.,
de Queiroz, 1993) have excluded many taxa
(all but four) to highlight the area of con�ict
between trees from the separately analyzed
genes. Given arealisticcaseinvolving a large
number of taxa, a �nite number of charac-
ters, and a con�ict that involves only some
of the taxa, combining data sets with differ-
ent phylogenetic histories may not seem so
irrational. Part of the combined tree may be
misled by the incongruence between phy-
logenetic histories, but the overall accuracy
of the combined-data estimate may be in-
creased by the larger number of characters
applied to parts of the tree unaffected by the
mismatch. Furthermore, the relative accu-
racies of separate, combined, or consensus
analyses may differ markedly depending on
which part of the tree is being considered.
Although these hypotheses make intuitive
sense, they have not been tested explicitly.

The idea that different data sets may have
different phylogenetic histories for only
parts of their underlying trees suggests the
need for methodologies that will take this
problem into account. A few such method-
ologies were summarized by de Queiroz
et al. (1995). In this paper I will (1) pro-
pose a simple methodology for dealing with
data sets that have different phylogenetic
histories, (2) present simulations used to
test some of the assumptions on which this
method is based, (3) compare this method-
ology with others that have been proposed
for dealing with con�icting data sets in phy-
logenetic analysis, and (4) discuss the appli-
cation of this methodology in an empirical
study.

METHODOLOGY

The methodology proposed proceeds by
the following steps:

1. Partition the total data available so as to
re�ect sets of characters that may have
different phylogenetic histories (e.g., par-
tition the data by unlinked genes but not
by types of changes within genes).

2. Perform separate analyses of these data
sets, and evaluate support for individual
clades in each.

3. Combine and analyze the data sets and
use the tree(s) from the combined data as
the best estimate of phylogeny, but con-
sider questionable those parts of the tree
that are in strongly supported con�ict be-
tween the separately analyzed data sets.
The con�icting parts could be considered
weakly supported until a majority of data
sets (i.e., other genes, morphology, etc.)
favor one resolution of the con�ict over
another.
The methodology outlined above should

prevent combined analysis from being
strongly misled by mismatches between the
phylogenetic histories of two data sets, but
also should simultaneously allow regions of
shared history in the different data sets to
be estimated using the maximum number
of characters possible. This approach relies
on the argument that clades thatare strongly
supported and in con�ict between data sets
may be indicative of differences in underly-
ing phylogenetic histories, whereas weakly
supported con�icts may be simply the re-
sult of stochastic error (Bull et al., 1993; de
Queiroz, 1993).

This approach also relies on methods that
test for support for individual clades (e.g.,
bootstrapping; Felsenstein, 1985) and may
be misled under conditions where these
methods are misled (e.g., Hillis and Bull,
1993). However, the methodology is not tied
to any particular test of clade support, and
improved methods for evaluating individ-
ual clades could (in theory) be easily incor-
porated into this general framework. Simi-
larly, this methodology may also be misled
if two data sets have different histories but
the character data are insuf�cient to show
strongly supported con�ict. This situation
would be problematic for most other ap-
proaches as well (e.g., those advocated by
Kluge, 1989; Bull et al., 1993; de Queiroz,
1993).
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Tests of overall incongruence between
data sets (e.g., Farris et al., 1994; Larson,
1994;Huelsenbeck and Bull, 1996)may seem
to be more useful than methods that test
support for individual clades for detecting
different histories. However, such global in-
congruence tests may be problematic in that
they do not identify, among the clades that
are in con�ict between a pair of data sets,
which are due to weak support and which
may have potentially different histories; the
whole tree is simply “signi�cantly incongru-
ent” or not. Furthermore, these tests may be
insensitive to localized differences in thehis-
tories of two data sets if many other clades
areavailable thatarestronglysupported and
congruent. Although these tests may be use-
ful for examining limited numbers of taxa
or for comparing speci�c parts of trees, test-
ing entire trees for signi�cantcon�ictmaybe
an overly coarse approach. There is clearly
a need for incongruence tests that will take
these problems into account.

The method I propose here requires con-
sidering the strongly con�icting clades to
be questionable or weakly supported. This
designation may seem overly vague to
some; however, this is routine practice in
phylogenetics—for example, when nodes
have low bootstrap or decay index values.
Alternatively, these clades could be repre-
sented as unresolved within the tree that is
based on the combined data. In some cases,
there may be reason to favor one of the two
con�icting data sets as being more likely to
re�ect the species tree, for example, when
comparing a clade that is well-supported by
many unlinked allozyme loci with one that
is based on DNA sequences from a single
gene (T. Titus, pers. comm.).

The method described may be useful as
a general approach for dealing with local-
ized, strongly supported con�icts between
data sets, and not simply those that occur
because of different phylogenetic histories.
For example, there may be areas of strongly
supported incongruence between data sets
related to long-branch attraction in one of
the data sets (e.g., Huelsenbeck, 1997) or to
nonindependence of characters (e.g., Shaf-
fer et al., 1991). If the speci�c cause could
be identi�ed, these cases of incongruence

might be resolved by applying a phyloge-
netic method that is less sensitive to long-
branch attraction(i.e., maximum likelihood)
or by deleting or downweighting characters
suspected to be nonindependent. However,
in many cases the source of incongruence
may simply be unknown (e.g., Poe, 1996),
and the method proposed in this study may
be of use.

JUSTIFICATION

The justi�cation for the methodology pro-
posed above is the idea that combining data
sets with partially differing histories may
improve phylogenetic accuracy in areas of
the tree with the same history but may not
improve accuracy in those areas of the phy-
logeny where the histories differ. In this sec-
tion, I use computer simulations to address
two questions:

1. How do separate, combined, and consen-
sus analyses perform when dealing with
two data sets with different phylogenetic
histories?

2. When there is a localized area of mis-
match between the histories underlying
two data sets, what are the relative accu-
racies of separate, combined, and consen-
sus analyses in different parts of the tree?

The simulations have a great advantage
in that the true species phylogeny is known,
and the ability of different methods to re-
cover this known phylogeny under differ-
ent (but simpli�ed) conditions can be tested
directly.

Simulation Methods
Phylogenies of 12 taxa were simulated

with DNA sequence data from two genes
(data sets). Two sets of simulations were per-
formed.

Analysis I.—The �rst set of simulations
examined the effects of different phyloge-
netic histories between data sets in seven
cases, using maximally asymmetric (Fig. 1)
and symmetric (Fig. 2) unrooted topologies.
Each case involved a different level of mis-
match between the gene and species trees in
one or both data sets:
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FIGURE 1. Different cases (I–VII) representing differ-
ent levels of agreement between the phylogenetic his-
tories of two data sets (genes), with an asymmetric tree
topology. Case I shows the true species phylogeny. The
circled taxa in V–VII indicate a lateral transfer of the
gene in taxon A to taxon G. The square-surrounded
taxa in VI and VII indicate a lateral transfer from taxon
L to taxon E.

Case I. No mismatch between the gene
and species tree in either data set,
with both data sets sharing the
same phylogenetic history.

Case II. Phylogeny of dataset 1 consistent
with species tree but withone dif-
ference in phylogenetic history
among closely related species in
data set 2 (placement of taxa B
and C switched).

Case III. Data set 1 consistent with species
tree but with two differences
among closely related species (in
different parts of the tree) in data
set 2 (taxa B and C switched and
taxa K and J switched).

Case IV. Both data sets having a local-
ized mismatch between the gene
and species tree (taxa B and C

switched in data set 1 and taxa K
and J switched in data set 2).

Case V. Data set 1 consistent with species
tree but with a lateral transfer
event among distantly related
species in data set 2 (sequence
of species A transferred from the
middle of its branch to the mid-
dle of the branch of species G).

Case VI. Data set 1 consistent with species
tree but with two lateral transfer
events among distantly related
species in data set 2 (as in caseV, a
sequence of species A transferred
to species G, plus a sequence of
species L transferred to species
E).

Case VII. Both data sets having a lateral
transfer event among distantly
related species (A transferred to
G in data set 1 and L transferred
to E in data set 2).

The speci�c topologies of the gene trees
were chosen to represent either minor or ex-
tensive mismatch between data sets. Maxi-
mally symmetric and asymmetric unrooted
topologies were examined. The number of
taxa (12) was chosen because it is large
enough to be realistic with respect to real
molecular phylogenetic studies, allows both
large (cases V–VII) and small (cases II–IV)
mismatches between the gene and species
trees, allows mismatches to occur in dif-
ferent parts of the phylogeny, and is small
enough to allow for effective tree searches.

Lineage sorting of ancestral polymor-
phisms (e.g., Avise et al., 1983; Tajima, 1983)
has been implicated as a likely mechanism
for mismatches between gene and species
trees in closely related species, whereas
mismatches among more distantly related
species could be the result of lateral transfer
events (e.g., through interspeci�c hybridiza-
tion; Smith et al., 1992; Kidwell, 1993). Thus,
cases II–IV are considered to represent cases
of lineage sorting, whereas cases V–VII rep-
resent lateral transfer. For cases of lateral
transfer, I assume that a gene is transferred
from the midpoint of its branch to the mid-
point of the branch of the taxon receiving the
transferred gene.
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FIGURE 2. Different cases (I–VII) representing differ-
ent levels of agreement between the phylogenetic his-
tories of two data sets (genes), with a symmetric tree
topology. Case I shows the true species phylogeny. The
circled taxa and the square-surrounded taxa are as in
Figure 1.

The accuracy of separate, combined, and
consensus analyses for these seven cases
was examined for different numbers of char-
acters and different branch lengths. The pro-
tocol for generating DNA sequence data
generally followed Huelsenbeck and Hillis
(1993). First, a random string of nucleotides
was generated as the starting point at the
nodeuniting taxaA and B (Figs. 1, 2), with an
equal probability of any of the four bases (A,
C, G, T) being present at a given site. From
this starting sequence, sequences evolved
along each branch and were duplicated at
speciation events to make up the tree of 12
taxa. For a given branch, the branch length
was considered to be the probability of a
given nucleotide position (character) having
changed by the end of the branch. Once a po-
sition changed, a change to any of the other
three bases was considered equally likely.

This assumption of equal probability of
substitution among bases conforms to the
Jukes–Cantor (1969) model of sequence evo-
lution, an admittedly simple (but widely
used) model.However, the goalof thesesim-
ulations is to test the effects of general vari-
ables in phylogenetic inference (underlying
tree topology, number of characters, level of
homoplasy) rather than to test the ef�ciency
of parsimony with more complex substitu-
tion models. Furthermore, because these pa-
rameters are general, I assume that the over-
all results are applicable to other kinds of
data as well (e.g., morphology, allozymes,
restriction sites).

For most simulations, branch lengths
were held constant among lineages and be-
tween data sets to better understand the ef-
fects of different branch lengths and con-
comitant levels of homoplasy. Given the
simulation design, a branch length of 0.75 ef-
fectively randomizes the phylogenetic infor-
mation present in a sequence (Huelsenbeck
and Hillis, 1993), whereas a branch length
of 0 is associated with no change occurring
in any character. For this study, neither of
these extreme branch lengths was of inter-
est, so I examined �ve arbitrary lengths be-
tween these extremes (0.01, 0.15, 0.30, 0.45,
and 0.60). These branch lengths were used
to illustrate the effects of different levels of
homoplasy.

The effects of unequal branch lengths
were also examined in two limited sets
of analyses. In one set of analyses (long-
unequal), a random number from 0.00–
0.75 was chosen to determine the branch
length of each lineage for each replicate; an-
other set of analyses (short-unequal) used a
much smaller range (0.00–0.15). The forces
generating differences in branch lengths
among lineages (e.g., time between splitting
events, taxon sampling) were assumed to act
equally across data sets; therefore, a branch
length determined for taxon A in data set 1
was also used for taxon A in data set 2 (re-
gardless of the position of taxon A).

For most simulations, the number of
characters (nucleotide positions) for each
data set was 50, 250, 500, or 1,000. The
raw, simulated sequence data were used
without screening, and characters could be
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parsimony-informative, uninformative, or
invariant. To create simulated data sets, I
used programs I had written in C.

For each set of conditions, 100 replicated
sets of two genes each were created and an-
alyzed. Four analyses were performed for
each replicate: data set 1, data set 2, con-
sensus, and combined data. The consensus
or taxonomic congruence (Mickevich, 1978)
analysis was based on a strict consensus tree
of the separate estimates from the two data
sets (the shortest tree or a strict consensus of
the shortest trees); strict consensus was used
following de Queiroz (1993). The use of con-
sensus trees from separately analyzed data
sets as actual estimates of phylogeny is con-
troversial, but has been advocated for cases
when genes have potentially different histo-
ries (de Queiroz, 1993). This study may rep-
resent the �rst test of the accuracyof the con-
sensus or taxonomic congruence approach.

Parsimony analyses were performed by
using PAUP* version 4.0d52 (provided by
D. L. Swofford). Data sets were analyzed us-
ing the heuristic search option, each search
consisting of 20 random-addition sequences
(starting trees) with TBR branch-swapping.

For a given set of conditions, the success
of the combined, consensus, and each of the
separate analyses was de�ned as the pro-
portion of correctly resolved clades of the
known species phylogeny averaged across
the 100 replicates. None of the methods
was given credit for nodes that were un-
resolved because of multiple equally par-
simonious trees. Bull et al. (1993) consid-
ered combined analysis to have failed to
improve accuracy when one of the two sep-
arately analyzed simulated data sets gave
a more accurate estimate than the estimate
from the two data sets combined. Yet, to
argue in such a case that separate analy-
sis is more accurate requires the implicit
assumption that the researcher consistently
knows which of the separately analyzed
data sets are accurate and which are inac-
curate. This questionable assumption is also
made in the present study although it may
strongly bias the results against combined
analysis.

Analysis II.—A limited set of simulations
was used to examine the accuracy of sepa-

rate, combined, and consensus analyses in
different parts of trees when there is a local-
ized mismatchbetween the gene and species
trees in one of the two data sets. Symmet-
ric and asymmetric tree topologies in case II
(Figs. 1, 2) wereexamined atdifferent branch
lengths (0.01, 0.15, 0.30, 0.45, and 0.60) with
250 characters per data set. To test the ac-
curacy of the methods in parts affected by
the mismatch, the simulations and analyses
from the �rst set of simulations were rerun.
Accuracy was assessed after pruning from
the estimated trees all taxa except those taxa
whose histories were known to differ be-
tween data sets (for symmetric trees, taxa A,
B, C, and D; for asymmetric trees taxa, A, B,
and C). One additional taxon, taxon L, was
included as a ”root” to the clades containing
the mismatch (it would be impossible to as-
sess the accuracy of a three-taxon unrooted
tree). To test accuracy in the parts of the trees
not affected by the mismatch, the analyses
were again rerun and accuracy was assessed
after pruning from the estimated trees those
taxa whose histories were known to differ
between data sets.

The simulation results are summarized
graphically. A more complete listing of the
results (mean accuracy for each method
for each set of conditions) is avail-
able on the Systematic Biology Website
(www.utexas.edu/depts/systbiol). A lim-
ited sample is presented in the Appendices.

Simulation Results

Analysis I.—The simulations testing the
effects of different histories on the overall
accuracyof separate, combined, and consen-
sus analyses of data sets with equal branch
lengths (Fig. 3) and unequal branch lengths
(Fig. 4) suggest that, under some conditions,
combining data sets with different phyloge-
netic histories can improve the accuracy of
phylogenetic analysis. How is this possi-
ble? The combined approach may perform
best when the mismatch between gene and
species trees is relatively small (or occurs in
both data sets) and/or when none of the sep-
arate analyses gives a highly accurate esti-
mateof the gene tree (long or highly unequal
branch lengths, low number of characters).

http://www.utexas.edu/depts/systbiol%29.
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FIGURE 3. Summary of conditions (black squares) where analysis of the combined data yields an estimate of
species phylogeny that is equally accurate or more accurate than the consensus tree or the separate analyses of
either of the two data sets. Branch lengths are equal between data sets. The number of characters (ch) in each
data set is given above each block of squares. Cases I–VII represent different levels of mismatch between the
phylogenetic histories of the genes (see Figs. 1, 2). Numbers above each column of squares represent different
branch lengths: 1 = 0.01, 2 = 0.15, 3 = 0.30, 4 = 0.45, 5 = 0.60. See Appendices 1 and 2 for examples of the raw
data. (a) Asymmetric topology; (b) symmetric topology.

This indirectly supports the idea that the
combined analysis may sacri�ce accuracy
in the part of the tree affected by the differ-
ent histories but increases accuracy over the
rest of the tree by increasing the number of
characters. Conversely, one of the separately
analyzed data sets will generally perform
best when the mismatch between the under-
lying histories of the data sets is extensive,
is con�ned to one data set, and/or when
the accuracy of each of the separate analy-
ses is high (short or slightly unequal branch
lengths, large numbers of characters).

Combined analysis failed to outperform
separate analysis over a large proportion
of the parameter space examined (Figs. 3,
4). However, I have two important caveats
about these results. First, I used the assump-
tion that the more accurate of the two data
sets was known without error. This assump-

tion is extremely unrealistic and biases the
results in favor of separate analysis. Because
all the characters in the data sets with dif-
ferent phylogenetic histories may be fully
(or equally) consistent with their underly-
ing trees, there may be no a priori way to
know which con�icting data set is best in the
real world. In many of the conditions simu-
lated in this study in which the accuracy of
the separate analysis is greater than that of
the combined analysis, the combined analy-
sis may provide an answer that is nearly as
accurate as that of the best of the separate
analyses but does not require knowing the
better data set a priori.

The second caveat is that in many cases
the separate analyses appear to be unrealis-
tically ef�cient. For example, given the sim-
pli�ed conditions simulated in this study,
only 250 base pairs of DNA sequence are
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FIGURE 4. Summary of conditions (black squares)
where analysis of the combined data yields an estimate
of species phylogeny that is equally accurateor moreac-
curate than the consensus tree or the separate analyses
of either of the two data sets. Branch lengths differ ran-
domly between lineages and are either short-unequal
(range = 0.00–0.15) or long-unequal (range 0.00–0.75).
Cases I–VII represent different levels of mismatch be-
tween the phylogenetic histories of the genes (see Figs.
1, 2). Numbers above each column of squares represent
different numbers of characters: 1 = 50,2 = 250,3 = 500,
4 = 1, 000. See Appendix 3 for examples of raw data.
(a) Asymmetric topology; (b) symmetric topology.

necessary to consistently recover a fully re-
solved and completely accurate tree for 12
taxa (at certain branch lengths). The fact that
empirical phylogenetic analyses based on
much longer sequences typically yield trees
that are, at least in some areas, weakly sup-
ported, unresolved, or in con�ict with trees
from other data sets suggests that the sim-
ulations in this study may overestimate the
ef�ciency of parsimony analysis of DNA se-
quences relative to real data sets.

Many realistic factors not incorporated
into these simulations would seem likely to
decrease the ef�ciency of parsimony analy-

sis (and could allow a combined analysis to
improve the estimate), including ambigu-
ities of sequence alignment, missing data,
nonindependence among sites, differences
in rates of changeamongsites,different rates
of substitution among bases at a single site,
very short internodes, and larger numbers
of taxa. The conditions in which combined
analysis outperforms separate analysis may
seem unusual in terms of the small numbers
of characters and the long branch lengths.
However, given that many empirical anal-
yses of DNA sequence data seem unlikely
to give consistently perfect estimates of the
true phylogeny (i.e., trees are often incom-
pletely resolved and weakly supported in
parts), the levels of accuracy for some of
these conditions may better re�ect reality
than those with more characters and shorter
branch lengths.

Consensus analysis generally performed
very poorly (Appendices 1–3). By de�nition,
the estimate from the consensus tree can be
no better than the estimate from the worstof
the separate analyses; in many cases, how-
ever, it is much worse. For many condi-
tions, the accuracy of the consensus tree
is less than half that of the combined tree
(Appendices 1–3). These include conditions
where branch lengths are relatively long, as
well as cases where the analysis of one or
both data sets is misled by lateral transfer
among distantly related species (e.g., cases
VI and VII). In these simulations, the con-
sensus approach seems to suffer both from
subsampling of characters and mismatches
between gene and species trees. Although
consensus analysis may be advantageous in
making fewer wrong assertions about phy-
logeny than combined analysis (de Queiroz,
1993), these results suggest that the consen-
sus approach may pay a heavy price for its
conservativeness in the loss of correct reso-
lution.

Overall, the results of the �rst set of sim-
ulations are ambiguous as to the most accu-
rate method for dealing with data sets with
different histories.Contraryto the assertions
of some authors (e.g., Bull et al., 1993; de
Queiroz, 1993), combined analysis outper-
forms separateanalysis on data sets withdif-
ferent histories under some simulated con-
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ditions. Under many other conditions, one
of the separatelyanalyzed data sets provides
a more accurate estimate than the combined
analysis.

Analysis II.—The second set of simula-
tions tested theaccuracyof thedifferent phy-
logenetic approaches in different parts of the
tree, given a localized mismatchbetween the
histories of the data sets. The results (Ap-
pendix 4) show that in thoseparts of the trees
that have different histories, the accuracy of
the combined approach is always less than
50% and is typically less than half that of
the best of the estimates from the separate
analyses. In contrast, for those parts of the
tree that share the same history, combining
the data always improves the estimate (un-
less the accuracy of all methods is already
100%). The increase in accuracy caused by
combining data is greatest when the sepa-
rate data sets give imperfect estimates of the
gene trees (Fig. 5), which seems likely to be
the case in many real data sets (see above).
Although it is not surprising that combin-
ing data sets would improve accuracy when
the data sets share the same history, still the
different parts of the tree are not wholly in-
dependent, and the results suggest that (for
the regions with congruent histories) the ad-

vantages of increasing the number of char-
acters may outweigh any errors caused by
the misleading data in the adjacent region
of the tree. In summary, these results sup-
port the idea that combining data sets with
localized areas of mismatches between their
underlying histories may improve phyloge-
netic accuracy in areas of the tree with the
same history but may not improve accu-
racy in those areas of the phylogeny where
the histories differ. These observations pro-
vide support for the methodology proposed
above, which uses the results of combined
analysis in some areas of a phylogeny but
not in others.

COMPARISON WITH OTHER METHODS

Four general recommendations can be
found in the literature for dealing with
data sets with different phylogenetic his-
tories: (1) never combine (e.g., Miyamoto
and Fitch, 1995), (2) always combine (e.g.,
Kluge, 1989; Kluge and Wolf, 1993; Chip-
pindale and Wiens, 1994), (3) combine if the
data arenot statisticallyheterogeneous (Bull
et al., 1993; de Queiroz, 1993), and (4) com-
bine but explicitly accommodate the differ-

FIGURE 5. Accuracy of separate analysis ( ), consensus analysis ( ), and combined analysis ( ) in different
parts of a phylogeny where there is a localized mismatch between gene and species trees in one of two data sets
(data set 2). Branch length = 0.45. See Appendix 4 for raw data and results from additional branch lengths.
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ences in phylogenetic history (de Queiroz et
al., 1995).The methodology proposed in this
paper is one of several that would fall under
recommendation 4. In this section, I discuss
some of the possible advantages and disad-
vantages of this methodologyrelative tooth-
ers that have been proposed.

Given a situation in which there is a
localized area of topological incongruence
between two data sets (their phylogenetic
histories differ over a limited area), the ap-
proaches of never combining and always
combining may not be satisfactory. If the
data sets are never combined, the results of
this study suggest thataccuracymay decline
in those parts of the tree unaffected by the
mismatch between the histories of the data
sets because of subsampling of characters
(Fig. 5). If the tree or trees from the combined
data are always used as the best estimate of
the species phylogeny, then the combined
analysis may be misled in those regions
that have differing phylogenetic histories
(Fig. 5).

Whether two data sets with partially dif-
ferent histories would be considered com-
binable or not by a statistical test of het-
erogeneity is not clear (e.g., de Queiroz,
1993; Rodrigo et al., 1993; Farris et al., 1994;
Huelsenbeck and Bull, 1996); this would de-
pend on the particulars of the data sets and
the test. If the data are considered combin-
able, then the combined analysis may be
misled in the con�icting parts of the tree, and
if they are not, accuracy may be reduced in
those parts of the tree with the same history.
Thus, no matterwhich test is applied or what
the outcome of the test is, this approach will
potentially suffer from disadvantages of ei-
ther separate or combined analysis.

De Queiroz et al. (1995) summarized sev-
eral methods that would allow combina-
tion of data sets while possibly accommo-
dating differences in phylogenetic histories
between data sets. This general approach
seems very promising for the situation in
which data sets have limited areas of dis-
agreement in their phylogenetic histories.
For a difference involving closely related
taxa, one proposed solution is to excise the
taxa responsible for the con�ict (Rodrigo et
al., 1993). This method may be problematic,

however, in that the position of these con-
�icting taxa would not be represented in the
larger tree. Thus, the method may fail to rep-
resent relationships thatarenot contested by
the separate data sets. Further, this method
does not allow the combined analysis to esti-
mate the placement of the con�icting clades
within the larger tree.

For con�icts spread widely over the tree,
the ”pairwise outlier excision” method (de
Queiroz et al., 1995) involves scoring taxa
of questionable placement as missing for
the ”minority” data set, given that three or
more data sets are available for these taxa
and that a con�icting position for the taxa
is supported in only one. Unfortunately, this
method would notbe helpful when only two
data sets are in con�ict but may offer a use-
ful way to resolve con�icts when more data
sets become available. It should be pointed
out that the methodology advocated in this
study might be forced to leave the entire
tree unresolved or weakly supported in the
caseof strongly supported con�icts between
two data sets that span the entire tree (con-
ditions where combined analysis performs
very poorly according to these simulations).
The approach of Doyle (1992), in which the
gene trees are coded as individual characters
in a combined analysis, might also be classi-
�ed with this group of methods. However,
given only two data sets, this method seems
likely to yield results identical to those of a
strict consensus tree of the separately ana-
lyzed data sets.

APPLICATION TO REAL DATA SETS: PHYLOGENETIC

ANALYSIS OF SCELOPORUS LIZARDS

The methodology proposed in this paper
was applied to molecular and morphologi-
cal data sets for the lizard genus Sceloporus
(Wiens and Reeder, 1997). Mitochondrial ri-
bosomal DNA sequences of the 12S and 16S
genes were used as one data set (because
all genes in the mitochondrial genome are
linked and should therefore share the same
phylogenetic history), and the nonmolecu-
lar characters (mostly morphological) were
combined into another. Each of the two data
sets was analyzed separately, and support
for individual clades within each data set
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was evaluated by nonparametric bootstrap-
ping. Oneareaof strongly supported con�ict
between the data sets was found, in a clade
within the variabilis species group. The data
were then combined, and the tree from the
combined data was taken to be the best es-
timate of phylogeny. However, the con�ict-
ing relationships within the variabilis group,
which in the combined tree are resolved in
favor of the larger molecular data set, were
considered arbitrarily resolved.

The possibility that data sets may have
partially incongruent histories, or at least
localized areas of strongly supported con-
�ict, has been discussed repeatedly in this
paper. The results from Sceloporus show that
such situations do occur in the real world.
This example also illustrates the potential
problems of traditional methods of dealing
with con�icting data sets in this type of sit-
uation. Failing to combine these data sets
gives poor resolution, even for areas of the
trees where con�icts are weakly supported
and may be due only to stochastic error. The
combined-data estimate is well-resolved but
may be misled within the variabilisgroup (in
which the linked molecular characters over-
whelm several seemingly unlinked morpho-
logical characters). Applying a global test of
combinability would lead to one of the two
problematic results above, depending on the
outcome of the test. Excising the con�ict-
ing taxawould fail to represent relationships
that both data sets agree on (e.g., placement
of the con�icting clade within the variabilis
group, monophyly of the variabilis group).
Applying themethod proposed in this study
leads to a well-resolved estimate based on
the combined data but treats conservatively
the clade that is in strongly supported con-
�ict.
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APPENDIX 1. Accuracy of separate, combined, and consensus analysis for two genes (data sets) with different
phylogenetic histories, with asymmetric and symmetric tree topologies and 50 characters in each data set. Each
value is the average accuracy from 100 replicated matrices.

Branch lengths

Asymmetric Symmetric

Case Analysis 0.01 0.15 0.30 0.45 0.60 0.01 0.15 0.30 0.45 0.60

I Data set 1 0.363 0.849 0.472 0.107 0.021 0.343 0.807 0.546 0.248 0.047
Data set 2 0.361 0.832 0.506 0.091 0.012 0.343 0.829 0.561 0.211 0.037
Consensus 0.139 0.714 0.261 0.018 0.000 0.125 0.667 0.315 0.067 0.003
Combined 0.601 0.955 0.744 0.185 0.021 0.577 0.956 0.749 0.342 0.052

II Data set 1 0.360 0.869 0.455 0.081 0.014 0.341 0.805 0.551 0.222 0.025
Data set 2 0.300 0.728 0.398 0.044 0.013 0.263 0.614 0.399 0.158 0.033
Consensus 0.106 0.636 0.180 0.008 000 0.093 0.486 0.228 0.048 0.000
Combined 0.559 0.915 0.695 0.140 0.025 0.489 0.810 0.624 0.295 0.042

III Data set 1 0.335 0.871 0.473 0.084 0.014 0.353 0.827 0.548 0.183 0.053
Data set 2 0.268 0.675 0.320 0.037 0.007 0.208 0.441 0.253 0.098 0.023
Consensus 0.089 0.590 0.132 0.003 0.000 0.066 0.350 0.136 0.020 0.000
Combined 0.497 0.856 0.641 0.149 0.019 0.423 0.702 0.512 0.241 0.049

IV Data set 1 0.333 0.744 0.402 0.066 0.013 0.267 0.637 0. 394 0.161 0.037
Data set 2 0.304 0.784 0.412 0.083 0.008 0.266 0.632 0.395 0.124 0.036
Consensus 0.097 0.567 0.159 0.003 000 0.069 0.353 0.120 0.015 0.003
Combined 0.517 0.858 0.649 0.149 0.014 0.414 0.682 0.523 0.198 0.036

V Data set 1 0.357 0.847 0.426 0.091 0.023 0.343 0.825 0.535 0.207 0.046
Data set 2 0.178 0.386 0.223 0.059 0.014 0.190 0.443 0.329 0.153 0.035
Consensus 0.060 0.331 0.092 0.008 000 0.068 0.375 0.191 0.044 0.001
Combined 0.420 0.613 0.432 0.125 0.022 0.420 0.708 0.555 0.267 0.044

VI Data set 1 0.344 0.846 0.465 0.099 0.027 0.363 0.824 0.514 0.219 0.047
Data set 2 0.001 0.005 0.008 0.007 0.003 0.087 0.195 0.148 0.057 0.019
Consensus 0.001 0.003 0.008 0.001 0.000 0.040 0.163 0.090 0.018 0.000
Combined 0.261 0.370 0.203 0.038 0.012 0.300 0.532 0.386 0.155 0.040

VII Data set 1 0.195 0.364 0.241 0.056 0.009 0.202 0.444 0.312 0.153 0.025
Data set 2 0.154 0.293 0.172 0.049 0.019 0.200 0.450 0.348 0.134 0.026
Consensus 0.000 0.010 0.004 0.001 0.000 0.031 0.156 0.093 0.029 0.002
Combined 0.264 0.398 0.132 0 044 0.004 0.336 0.544 0.383 0.169 0.040
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APPENDIX 2. Accuracy of separate, combined, and consensus analyses for two genes (data sets) with different
phylogenetic histories, asymmetric and symmetric tree topologies, and 1,000 characters in each data set. Each
value is the average accuracy from 100 replicated matrices.

Branch lengths

Asymmetric Symmetric

Case Analysis 0.01 0.15 0.30 0.45 0.60 0.01 0.15 0.30 0.45 0.60

I Data set 1 1.000 1.000 1.000 0.839 0.101 1.000 1.000 0.996 0.792 0.230
Data set 2 1.000 1.000 1.000 0.862 0.091 1.000 1.000 0.993 0.782 0.210
Consensus 1.000 1.000 1.000 0.726 0.021 1.000 1.000 0.989 0.681 0.055
Combined 1.000 1.000 1.000 0.965 0.159 1.000 1.000 0.999 0.868 0.293

II Data set 1 1.000 1.000 1.000 0.823 0.090 1.000 1.000 0.994 0.790 0.219
Data set 2 0.890 0.890 0.890 0.719 0.070 0.780 0.780 0.776 0.567 0.141
Consensus 0.890 0.890 0.890 0.585 0.014 0.780 0.780 0.770 0.475 0.037
Combined 0.939 0.946 0.934 0.913 0.115 0.875 0.892 0.880 0.750 0.252

III Data set 1 1.000 1.000 1.000 0.802 0.091 1.000 1.000 0.996 0.785 0.221
Data set 2 0.780 0.780 0.780 0.623 0.034 0.560 0.560 0.555 0.362 0.087
Consensus 0.780 0.780 0.780 0.466 0.004 0.560 0.560 0.551 0.278 0.025
Combined 0.891 0.883 0.873 0.873 0.088 0.716 0.771 0.765 0.603 0.212

IV Data set 1 0.890 0.890 0.890 0.748 0.080 0.780 0.780 0.774 0.578 0.172
Data set 2 0.890 0.890 0.890 0.705 0.081 0.780 0.780 0.774 0.563 0.161
Consensus 0.780 0.780 0.780 0.486 0.008 0.560 0.560 0.548 0.273 0.023
Combined 0.884 0.883 0.882 0.851 0.130 0.701 0.760 0.746 0.604 0.204

V Data set 1 1.000 1.000 1.000 0.818 0.087 1.000 1.000 0.994 0.789 0.214
Data set 2 0.440 0.440 0.439 0.364 0.052 0.560 0.560 0.558 0.474 0.148
Consensus 0.440 0.440 0.439 0.301 0.009 0.560 0.560 0.558 0.426 0.046
Combined 0.768 0.602 0.480 0.417 0.070 0.837 0.735 0.674 0.565 0.195

VI Data set 1 1.000 1.000 1.000 0.836 0.103 1.000 1.000 0.993 0.781 0.247
Data set 2 0.000 0.000 0.000 0.000 0.000 0.220 0.220 0.220 0.201 0.053
Consensus 0.000 0.000 0.000 0.000 0.000 0.220 0.220 0.220 0.189 0.018
Combined 0.715 0.479 0.080 0.008 0.001 0.670 0.651 0.463 0.286 0.088

VII Data set 1 0.440 0.440 0.440 0.363 0.044 0.560 0.560 0.556 0.489 0.146
Data set 2 0.330 0.330 0.330 0.295 0.037 0.560 0.560 0.556 0.475 0.153
Consensus 0.000 0.000 0.000 0.000 0.000 0.220 0.220 0.220 0.200 0.025
Combined 0.733 0.551 0.093 0.003 0.000 0.746 0.701 0.469 0.278 0.095

APPENDIX 3. Accuracy of separate, combined, and consensus analysis for two genes (data sets) with different
phylogenetic histories, different numbers of characters, asymmetric and symmetric tree topologies, short-unequal
(0.00–0.15) and long-unequal (0.00–0.75) branch lengths. Each value is the average accuracy from 100 replicated
matrices.

No. characters

Short-unequal Long-unequal

Asymmetric Symmetric Asymmetric Symmetric

Case Analysis 50 1,000 50 1,000 50 1,000 50 1,000

I Data set 1 0.747 0.978 0.732 0.980 0.132 0.423 0.311 0.576
Data set 2 0.753 0.975 0.740 0.987 0.159 0.416 0.293 0.558
Consensus 0.606 0.965 0.601 0.974 0.072 0.314 0.180 0.489
Combined 0.878 0.985 0.843 0.988 0.215 0.445 0.393 0.598

II Data set 1 0.734 0.970 0.757 0.976 0.142 0.401 0.253 0.517
Data set 2 0.646 0.865 0.575 0.752 0.114 0.340 0.191 0.378
Consensus 0.523 0.849 0.482 0.743 0.049 0.252 0.108 0.301
Combined 0.790 0.928 0.748 0.838 0.200 0.419 0.283 0.485
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APPENDIX 3. Continued.

No. characters

Short-unequal Long-unequal

Asymmetric Symmetric Asymmetric Symmetric

Case Analysis 50 1,000 50 1,000 50 1,000 50 1,000

III Data set 1 0.727 0.979 0.702 0.975 0.154 0.417 0.292 0.553
Data set 2 0.582 0.761 0.408 0.548 0.107 0.271 0.123 0.250
Consensus 0.463 0.754 0.314 0.539 0.048 0.202 0.073 0.203
Combined 0.742 0.879 0.632 0.708 0.152 0.403 0.261 0.427

IV Data set 1 0.670 0.867 0.554 0.758 0.128 0.287 0.196 0.415
Data set 2 0.673 0.871 0.544 0.758 0.126 0.329 0.182 0.411
Consensus 0.470 0.751 0.289 0.535 0.033 0.168 0.065 0.221
Combined 0.772 0.867 0.642 0.739 0.175 0.373 0.234 0.444

V Data set 1 0.760 0.977 0.727 0.974 0.122 0.408 0.303 0.567
Data set 2 0.348 0.431 0.413 0.547 0.089 0.216 0.199 0.347
Consensus 0.295 0.423 0.332 0.537 0.042 0.138 0.126 0.302
Combined 0.639 0.705 0.643 0.800 0.154 0.305 0.309 0.449

VI Consensus 0.741 0.969 0.715 0.969 0.159 0.397 0.300 0.539
Combined 0.004 0.001 0.169 0.217 0.024 0.018 0.092 0.151
Data set 1 0.003 0.001 0.134 0.212 0.012 0.018 0.065 0.138
Data set 2 0.431 0.538 0.504 0.632 0.102 0.145 0.245 0.301

VII Data set 1 0.346 0.433 0.398 0.546 0.108 0.197 0.189 0.367
Data set 2 0.263 0.321 0.408 0.549 0.102 0.191 0.194 0.345
Consensus 0.007 0.001 0.145 0.213 0.013 0.017 0.072 0.152
Combined 0.465 0.646 0.496 0.684 0.104 0.120 0.231 0.320

APPENDIX 4. Accuracy of separate, consensus, and combined analyses in different parts of a phylogeny where
there is a localized mismatch between gene and species trees in one of two data sets (data set 2). For each tree
shape, one column represents the part of the phylogeny directly affected by the mismatch, the other represents
those parts that share the same phylogenetic history. There are 250 characters in each data set. Each value is the
average accuracy from 100 replicated matrices.

Tree shape

Asymmetric Symmetric

Branch length Method Mismatch Congruent Mismatch Congruent

0.01 Data set 1 0.890 0.933 0.885 0.910
Data set 2 0.000 0.896 0.000 0.904
Consensus 0.000 0.836 0.000 0.828
Combined 0.460 0.992 0.435 0.984

0.15 Data set 1 1.000 1.000 1.000 1.000
Data set 2 0.000 1.000 0.000 0.998
Consensus 0.000 1.000 0.000 0.998
Combined 0.460 1.000 0.450 1.000

0.30 Data set 1 0.990 0.960 0.970 0.942
Data set 2 0.000 0.963 0.000 0.956
Consensus 0.000 0.924 0.000 0.904
Combined 0.500 0.998 0.360 0.990

0.45 Data set 1 0.790 0.347 0.830 0.700
Data set 2 0.080 0.388 0.010 0.684
Consensus 0.060 0.169 0.010 0.502
Combined 0.450 0.600 0.345 0.832

0.60 Data set 1 0.380 0.052 0.305 0.222
Data set 2 0.250 0.049 0.105 0.174
Consensus 0.080 0.002 0.020 0.050
Combined 0.300 0.091 0.180 0.264


