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Abstract.—Many aspects of morphological phylogenetics are controversial in the theoretical system-
atics literature and yet are often poorly explained and justi�ed in empirical studies. In this paper, I
argue that most morphological characters describe variation that is fundamentally quantitative, re-
gardless of whether they are coded qualitatively or quantitatively by systematists. Given this view,
three fundamental problems in morphological character analysis (de�nition, delimitation, and order-
ing of character states) may have a common solution: coding morphological characters as continuous
quantitative traits. A new parsimony method (step-matrix gap-weighting, a modi�cation of Thiele’s
approach) is proposed that allows quantitative traits to be analyzed as continuous variables. The
problem of scaling or weighting quantitative characters relative to qualitative characters (and to each
other) is reviewed, and three possible solutions are described. The new coding method is applied to
data from hoplocercid lizards, and the results show the sensitivity of phylogenetic conclusions to dif-
ferent scaling methods. Although some authors reject the use of continuous, overlapping, quantitative
characters in phylogenetic analysis, quantitative data from hoplocercid lizards that are coded using
the new approach contain signi�cant phylogenetic structure and exhibit levels of homoplasy simi-
lar to those seen in data that are coded qualitatively. [Character coding; morphology; phylogenetics;
quantitative characters; weighting.]

Good science requires clearly explained,
repeatable methods. Yet, practitioners of
morphological phylogenetics tend not
to be explicit about their methodology,
speci�cally, how morphological characters
are selected, and how states are de�ned,
delimited, coded, and ordered (a process I
refer to as “character analysis”). The lack
of methodological explanation in published
morphological studies has been discussed by
several authors (e.g., Pimentel and Riggins,
1987; Pogue and Mickevich, 1990; Stevens,
1991; Thiele, 1993; Wiens, 1995) and has been
documented for character selection (Poe and
Wiens, 2000). This is a particularly serious
problem, because in contrast to analysis of
DNA sequence data, in which character def-
inition and character state delimitation are
virtually automatic (the nontrivial problem
of alignment notwithstanding), morpholog-
ical character analysis requires considerable
effort, involving many methodological
decisions and implicit assumptions at every
step in the process.

Many aspects of morphological character
analysis are controversial, including the way
in which characters are constructed (e.g.,
Maddison, 1993; Pleijel, 1995; Wilkinson,
1995; Hawkins et al., 1997; Lee and Bryant,
1999; Strong and Lipscomb, 1999), whether
intraspeci�cally variable characters can be

included (Pimentel and Riggins, 1987; Nixon
and Wheeler, 1990; Stevens, 1991; Campbell
and Frost, 1993; Thiele, 1993; Wiens, 1995,
1998; Rae, 1998), how within-species vari-
ation is coded (Archie, 1985; Campbell and
Frost, 1993; Thiele, 1993; Wiens, 1995, 1999;
Swiderski et al., 1998 Smith and Gutberlet,
2001), how character states are ordered
(Hauser and Presch, 1991; Lipscomb, 1992;
Wilkinson, 1992; Slowinski, 1993), and how
different types of morphological characters
are weighted relative to each other (e.g., Far-
ris, 1990; Campbell and Frost, 1993; Wiens,
1995, 1998). Different choices and assump-
tions are important because they can lead to
radically different trees (e.g., Wiens, 1995).

In this paper, I suggest that for many
morphological characters, these problems
and controversies in the selection, de�ni-
tion, delimitation, and ordering of charac-
ters may have a common solution. Many,
if not most, morphological characters de-
scribe variation in quantitative traits (e.g.,
differences in size, shape, or counts of se-
rially homologous structures), regardless of
whether systematists choose to code them
quantitativelyorqualitatively (Stevens, 1991;
Thiele, 1993). Given this, three fundamen-
tal problems of character analysis (charac-
ter state de�nition, delimitation, and order-
ing) potentially can be solved by simply
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coding these quantitative traits as contin-
uous, quantitative variables. I propose a
parsimony method that allows quantitative
traits to be analyzed directly as continu-
ous variables (a modi�cation of the gap-
weighting method of Thiele [1993]). I then
discuss the problem of scaling (or weight-
ing) quantitative characters relative to qual-
itative characters and to each other and
describe three possible solutions to this prob-
lem. I demonstrate the new approach to cod-
ing, using an empirical data set for hoplo-
cercid lizards and show that phylogenetic
results can be highly sensitive to different
scaling methods. Finally, although many au-
thors have advocated excluding continuous
quantitative characters from phylogenetic
analyses, I show that quantitative data from
hoplocercid lizards coded by this new ap-
proach do contain signi�cant phylogenetic
signal and exhibit levels of homoplasy
similar to those for data that are coded
qualitatively.

TERMINOLOGY

There is often confusion surrounding the
terminology of different types of morpho-
logical characters. As noted in Thiele’s (1993)
review, quantitative characters are described
using numbers, whether those numbers de-
scribe the relative size or shape of a struc-
ture (morphometric characters) or a count
of serially homologous traits (meristic char-
acters, such as the number of teeth, limbs,
or vertebrae). Qualitative characters are de-
scribed with words (e.g., short, long, present,
absent). Continuous characters are charac-
ters that can take on any real number value,
whether a measurement of a morphometric
character in a speci�c individual, or the mean
value of an intraspeci�cally variable, quan-
titative trait for a given species (including
meristic characters). Discrete characters are
those that can take on only a limited subset of
all possible values; these can refer to charac-
ter states (e.g., 0, 1), or raw values for meris-
tic traits (e.g., 20 maxillary teeth). In much
of the systematics literature, however, “dis-
crete” is often used to mean characters that
show some degree of disjunction between
species in ranges of within-species variation
(i.e., they have nonoverlapping ranges), and
“continuous” is used to mean characters that
show little disjunction.

ADVANTAGES OF TREATING
MORPHOLOGICAL CHARACTERS AS

CONTINUOUS QUANTITATIVE VARIABLES

Morphological characters reported in the
phylogenetics literature typically describe
variation that is fundamentally quantitative,
whether it is variation in relative size or
shape of structures or in counts of meris-
tic characters. However, as noted by Stevens
(1991) and Thiele (1993), quantitative vari-
ation is often coded as discrete through
qualitative description or use of a quanti-
tative cutoff (e.g., state 0 D 2¡4 scales; state
1 D 5¡7 scales). Explicit quantitative coding
methods, such as M-coding (Goldman, 1988)
and gap weighting (Thiele, 1993), have been
used by some systematists (e.g., Boughton
et al., 1991; Chu, 1998; Gutberlet, 1998; Poe,
1998). Other systematists exclude quantita-
tive characters because of so-called contin-
uous variation (meaning extensive overlap
in ranges of trait values between species),
given the idea that such data are unsuit-
able for phylogeny reconstruction (e.g., Pi-
mentel and Riggins, 1987). However, most
published studies discuss neither how vari-
ation was coded nor what criteria were used
for character selection (see review by Poe and
Wiens, 2000).

I make three proposals. First, morpholog-
ical systematists should explain clearly, and
justify, their criteria for selection of charac-
ters and their methods of character anal-
ysis (i.e., de�ning, delimiting, coding, and
ordering character states). Second, exclud-
ing charactersbecause of overlapping ranges
of intraspeci�c variation (“continuous”) is
unjusti�ed. Intraspeci�cally variable, over-
lapping traits can contain useful phylo-
genetic information, whether the charac-
ters are coded quantitatively (Thiele, 1993;
this study) or qualitatively (i.e., polymor-
phic characters; Wiens, 1995, 1998). Further-
more, the distinction between intraspeci�-
cally “�xed” and variable characters may
be an artifact of small sample size and
qualitative character de�nition (few char-
acters will be intraspeci�cally invariant if
de�ned quantitatively). Even though char-
acters showing greater intraspeci�c varia-
tion tend to be more homoplastic (Archie,
1985; Campbell and Frost, 1993; Wiens,
1995), results from real and simulated
data sets show that—given a �nite sam-
ple of characters—including polymorphic
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characters consistently increases phyloge-
netic accuracy relative to excluding them
(Wiens and Servedio, 1997; Wiens, 1998).
Third, coding quantitative variation as con-
tinuous quantitative characters (i.e., weight-
ing character state transformations on the
basis of differences in mean trait values us-
ing the method proposed in this study) may
be preferable to qualitative coding because
it can potentially solve three common prob-
lems in morphological phylogenetics. These
problems are explained in the sections below.

Vague character de�nitions.—The language
of many character state descriptions is ex-
tremely vague. For example, states are com-
monly described simply as “wide” versus
“narrow”, “small” versus “large”, or “long”
versus “short”. The problem is that this de-
scription is not clear on how a given speci-
men is assigned a given state. This problem
can be solved by de�ning the trait quantita-
tively.

Arbitrary character state delimitation.—
Many systematists provide explicit quan-
titative criteria for determining whether a
given specimen has a given character state
for a given character. In many cases, how-
ever, it is not clear how the states were de-
limited. Typically, a range of values is given
for each state, but usually without expla-
nation for why a given set of ranges was
chosen, or why a given number of inter-
vals was used (e.g., state 0 D 1–3 scales, state
1 D 4–6 scales; state 0 D olecranon process
<20% humerus length, state 1 process >40%
humerus length). Similar cutoffs may also be
de�ned by using qualitative morphological
landmarks, such as the presence or absence
of contact between two features and whether
one structure is longer or shorter than an-
other. In some cases, even the presence or ab-
sence of a feature (a “classic”qualitativechar-
acter) may be an arbitrary cutoff for a broad
range of continuous quantitative variation in
the size of the feature (Poe and Wiens, 2000).
Gift and Stevens (1997) have shown exper-
imentally how different researchers can di-
vide the same quantitative variation in very
different ways, leading to very different char-
acter states. This problem can be solved by
not using a cutoff at all and instead coding
the character as a continuous variable.

Use of cutoffs or ranges may lead to
three additional problems that have not
been widely appreciated. First, considerable

variation within character state ranges may
be ignored. For example, given a character
with state 0 consisting of 11–14 vertebrae
and state 1 of 15–20 vertebrae, two hypo-
thetical taxa with species values of 11 and
14 vertebrae would be coded as identical.
Second, differences within intervals may be
larger than between intervals. For the above
character, a change from 11 to 14 vertebrae is
ignored, but a change from 14 to 15 receives
maximum weight. Third, use of cutoffs and
ranges may not re�ect the differences in the
amount of change between character states.
For example, some range-coded characters
are treated such that all gaps between ranges
are equal, when this is clearly not the case. If
a character is coded such that state 0 D mean
species values from 0 to 2, state 1 D 3– 4,
and state 2 D 11–15, a simple unweighted
analysis would not re�ect the similarity
between states 0 and 1 relative to state 2
(see also Fig. 1). Yet, the degree of similarity
between values found in each species was
the criterion used in delimiting the states
in the �rst place. All of the problems noted
above for the use of quantitative cut-offs
are also potentially present in quantitative
characters that are treated qualitatively,
and all of them can be solved by treating
quantitative characters as continuous.

Ordering of character states.—The question
of whether or not to order character states is
controversial. For many characters describ-
ing quantitative variation, systematists gen-
erally assume that trait values that are similar
but not identical between taxa can be lumped
into the same state. The assumption underly-
ing this approach, that there is a special sim-
ilarity between taxa with similar trait values,
also supports analyzing these characters as
continuous variables and provides a logical
basis for ordering quantitative characters, re-
gardless of whether they are coded qualita-
tively or quantitatively.

FIGURE 1. Hypothetical datashowing differences be-
tween size of gaps between mean values of species, and
the potential importance of gap-weighting.
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OBJECTIONS TO QUANTIFICATION

Most of the putative disadvantages of
quantitative coding are shared with quali-
tative coding (Zelditch et al., 2000). For ex-
ample, systematists may be concerned about
how one derives characters from morphome-
tric data, and if quantitative traits are cor-
related with body size (or with each other),
exhibit variation caused by phenotypic plas-
ticity, or require large sample sizes to be
included. However, none of these potential
problems are created by quanti�cation; they
exist independently of whether the charac-
tersaretreatedquantitativelyorqualitatively
(Zelditch et al., 2000).

CODING CONTINUOUS MORPHOLOGICAL
VARIABLES USING STEP-MATRIX

GAP-WEIGHTING

Several authors have proposed treating
intrinsically quantitative variables quan-
titatively and have developed various
methods to do this (e.g., gap-coding:
Mickevich and Johnson, 1976; generalized
gap-coding: Archie, 1985; segment-coding:
Colless, 1980; Thorpe, 1984; Chappill, 1989;
M-coding: Goldman, 1988; gap-weighting:
Thiele, 1993; �nite-mixture coding: Strait
et al., 1996; overlap-coding: Swiderski et al.,
1998). Thiele (1993) proposed gap-weighting
as a method for treating continuous vari-
ables as more-or-less continuous, by giving
large weights to large differences in trait
means between species, and small weights
to small differences. Thiele’s implementa-
tion of gap-weighting involves �nding, for a
given character, the mean value of the trait
in each species in the analysis, the range
of mean species values among taxa (i.e., the
species with the greatest mean value and the
species with the lowest), and then dividing
this range into smaller ranges or segments
equal to the maximum number of character
states allowed by the phylogenetic software
program (e.g., 32 for PAUP¤). Species are
then assigned states based on these ranges,
and the character is ordered. Evolving from
low to high mean trait values (or vice versa)
therefore requires passing through many in-
termediate states and requires many steps,
whereas smaller changes in trait values in-
volve fewer state changes and fewer steps.

An important advantage of the gap-
weighting method is that it incorporates

information on the distance between states,
weighting the changes according to the dif-
ference between mean species values (hence
the name). For example, an analysis of
the data in Fig. 1 using gap-coding, �nite-
mixture coding, or overlap-coding might
reveal evidence for three character states.
However, given that the degree of similarity
between trait values is important and phy-
logenetically informative (in fact, it is the
criterion used to delimit states in the �rst
place), changes between states0 and 1 should
be much easier than evolving from either of
these states to state 2. Yet, all methods but
gap-weighting and segment-coding ignore
this information.

Where Thiele’s method falls short of treat-
ing continuous variables as continuous is in
the limited number of states. I propose a
method that circumvents this limitation by
weighting the gaps between mean species
values with step matrices. I call this approach
step-matrix gap-weighting. For a given char-
acter, each taxon with a unique mean trait
value is assigned a unique character state,
and the costs of changes between these states
are speci�ed with a step matrix, based on
the difference in mean trait values between
each pair of species. The maximum cost be-
tween statesin a step matrix is 1,000in PAUP¤

(Swofford, 1998), and 999 in MacClade (Mad-
dison and Maddison, 1992); using the largest
value possible allows the most-�ne-grained
weighting. To implement the method for
a given character, the mean trait value (x)
for a given species is converted to a score
(xS) between 0 and 1,000 (or 999) by range-
standardizing the data according to the fol-
lowing formula (from Thiele, 1993)

xS D x ¡ min
max ¡ min

£ 1,000

where “min” is the minimum (lowest) mean
species value of the trait across all species
and “max” the maximum. The costof a trans-
formation between each character state (or
taxon) in the step matrix is simply the dif-
ference between these scores. A simpli�ed
example of this coding method is shown in
Figure 2, and a program to implement this
method is available from the author.

Analysis of quantitative characters using
step matrices does have some disadvan-
tages, however. First, analyses arepotentially
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FIGURE 2. Hypothetical example showing how a quantitative character is coded with step-matrix gap-weighting.

constrained by the number of distinct states
allowed by the computer software package.
This makes it dif�cult to include very large
numbers of taxa (>32 for PAUP or PAUP¤)
withunique traitmeans. If the number of taxa
with unique means is too large, I recommend
using Thiele’s (1993) gap-weighting method.
This method uses less-�ne-grained informa-
tion but has no limits on the number of taxa
that can be coded. Second, when using step-
matrix gap-weighting, the only states that
are reconstructed at ancestralnodes are those
that occur within terminal taxa. However, to
what extent (if any) this negatively impacts
tree reconstruction is unclear, and simula-
tions and congruence studies with polymor-
phic characters coded with frequency-based
step matrices do not suggest that this prob-
lem limits phylogenetic accuracy (Wiens and
Servedio, 1997, 1998; Wiens, 1998).

Some systematists may object to step-
matrix gap-weighting because it requires
assumptions about evolutionary processes.
However, as stated above, this method is
simply a logical extension of the same as-
sumption that is widely used by morpho-
logical systematists when they code intrinsi-
cally quantitative characters. Morphological
character states typically describe ranges of
trait values, regardless of whether the states
are de�ned quantitatively (e.g., state 0 D
frontal process length >50% nasal length vs.
state 1 D frontal process <40% nasal length)
or qualitatively (e.g., frontal process long vs.
short). Thus, systematists implicitly assume
that taxa sharing similar but nonidentical
trait values should be more closely related
than taxa sharing more dissimilar trait val-
ues. They assume that traits will generally
evolve gradually, rather than leaping from
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low to high trait values and vice versa (i.e.,
they assume no a priori homoplasy in quan-
titative trait values). This assumption is little
more than an extension of parsimony to char-
acter state de�nition; the minimum amount
of change is assumed a priori. This assump-
tion is also supported by the �elds of em-
pirical and theoretical quantitative genetics
(Lynch and Walsh, 1998), which show that a
character is generally more likely to evolve
to a similar trait value (e.g., from a low mean
number of ventral scales to a different low
number) than to a dissimilarvalue (e.g., from
a low to a high number of ventral scales).

Distance and likelihood methods have
also been developed that can treat continu-
ous morphological data as continuous (e.g.,
Felsenstein, 1981,1988;Schluter, 1984;Lynch,
1989), and these methods may be advan-
tageous relative to parsimony under some
conditions (e.g., Wiens and Servedio, 1998).
However, current applications of these meth-
ods do not readily allow for combining qual-
itative and quantitative traits, which may
make them dif�cult to apply to many real
data sets.

SCALING AND WEIGHTING
QUANTITATIVE CHARACTERS

Not all characters are readily treated quan-
titatively, and a morphological analysis may
contain a mixture of characters coded qual-
itatively and quantitatively (e.g., Chu, 1998;
Gutberlet, 1998; Poe, 1998). How we weight
or scale characters of different types rel-
ative to each other is an important issue
that has received relatively little discussion
(Farris, 1990; Thiele, 1993). For example, ex-
plicitly treating the relative length of a bone
as a morphometric character with Thiele’s
(1993) gap-weighting method results in 32
ordered character states. Treating the same
character as a qualitative trait (e.g., long vs.
short) yields only two states. If the charac-
ter is given equal weight relative to quali-
tative characters in both, the weight of the
maximum change in the same character is
31 times greater when treated quantitatively
rather thanqualitatively. The problem is even
worse with step-matrix coding; the maxi-
mum length of the character is 1 when treated
qualitatively and 1,000 when treated quanti-
tatively. These dramaticdifferences in weight
clearly are unjusti�ed. Three approaches
might be used to adjust the weight of quan-

titative characters: between-character scal-
ing, between-state scaling, and statistical
scaling.

Between-character scaling.—Various au-
thors have recommended weighting or
scaling quantitative characters to be equal
to each other and to qualitative characters
(e.g., Thiele, 1993). The goal is to ensure
that quantitative and (binary) qualitative
characters have the same maximum length,
an approach I label between-character
scaling. For quantitative characters coded
using step matrices with a maximum
weight of 1,000, this equal weighting can be
achieved simply by giving non-step-matrix
characters a weight of 1,000. This seems to
be a reasonable approach, particularly for
morphometric characters.

The appropriate scaling for meristic
characters is less clear. When meristic char-
acters are viewed simply in terms of com-
paring mean species values, they are clearly
continuous traits that are similar to morpho-
metric characters. Under this view, between-
character scaling may be most appropriate
for meristic characters. When we consider
the raw meristic data within species, meris-
tic characters can also be viewed as dis-
crete characters that are typically polymor-
phic and have many states. For characters
involving the number of seriallyhomologous
structures, a continuum exists, running from
binary characters, to multistate characters, to
meristic characters;where a character falls on
this continuum depends largely on the range
of trait values, such that a small range implies
a small number of states (Fig. 3). This contin-
uum brings to mind Farris’ (1990) question:
Should meristic charactersbedownweighted
merely because they have many states? For
example, say that we observe taxa �xed for
vertebral numbers of 10 and 11 among the
species of a given group (Fig. 3). This is an

FIGURE 3. Hypothetical example illustrating the con-
tinuum from binary to multistate to meristic characters.
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obviously discrete binary character that
would have the same weight as any other
traditional qualitative character. If we also
observe taxa �xed for 12 and 13 vertebrae in
the same group, and we assumethe character
is ordered, then applying between-character
scaling to this character would make the cost
(weight) of going from 10 to 11 vertebrae de-
crease to 33% of its original weight (i.e., be-
cause the cost of going from 10 to 13 is scaled
to be equal to the cost of going from 0 to 1 in
a �xed character, the cost of going from 10 to
11 decreases to one-third). But if the standard
for weighting characters is the change in the
frequency of adjacent character states from 0
to 100% (i.e., a change from 0 to 1 in a �xed
character), then a change from 10 vertebrae
in all specimens of a given species to 13 ver-
tebrae in another should instead be equiv-
alent to three changes between �xed traits,
and should not be downweighted.

Between-state scaling.—In the context of
step-matrix analysis of quantitative vari-
ables, what we need is a weighting scheme in
which transformations between species with
�xed, adjacent values of meristic variables
(e.g., 10 to 11 vertebrae) receive the same
weight as changes in binary variables (0 to
1,000), and more variable species with inter-
mediate mean values (e.g., 10.5) receive pro-
portionally intermediate weights. This can
be accomplished by weighting each meris-
tic character by the difference between the
maximum and minimum mean species trait
values (across all species in the analysis) for
that character. I call this approach between-
state scaling. An important advantage of this
method relative to between-character scaling
is that the cost of transformation between
�xed, adjacent trait values (e.g., from 10 to
11 vertebrae) remains constant, regardless of
the values that occur in other species.

A disadvantageof between-state scaling is
that if the range of character state values is
extremely high (e.g., 10 to 200), then char-
acters weighted by this approach may have
a very powerful in�uence on the phyloge-
netic results. Unfortunately, exactly where
one draws the line in this continuum from
multistate to meristic characters is unclear.

Statistical scaling.—A third approach that
might be applied to scaling both morphome-
tric and meristic characters is to combine the
step-matrix gap-weighting method with the
statistical methods designed for determin-
ing distinct states (e.g., �nite-mixture coding,

gap-coding). The statistical methods could
be used to determine the number of distinct
states for each character, and the number
of distinct states minus one could be used
as a weighting function for each step-matrix
coded character. Using this method, the cost
of a change between the lowest and highest
mean species trait values would be equiva-
lent to the maximum length of an ordered
qualitative character; whether it was equiva-
lent to a qualitative character with two states,
four states, or more would depend on how
many states were determined to be statisti-
cally distinct. The cost of changes between
taxa with intermediate trait means would re-
main proportional to the difference between
trait means, as for all characters coded using
step-matrix gap-weighting. Thus, a charac-
ter in which there are only two distinct states
would receive a weight of one (equivalent to
a �xed, binary character). A character with
three statistically distinct states would re-
ceive a weight of two, such that changes from
the lowest mean to the highest mean would
have a cost of 2,000; this would be equivalent
to two steps, or a change from 0 to 1 to 2 in a
�xed, ordered, multistate,qualitative charac-
ter. This weighting scheme, called statistical
scaling, has the advantage of incorporating
all the relevant information on the distance
between species means, as well as some in-
formation on the variability of traits within
taxa.However, this approachshares the same
disadvantages of the statistical methods for
character state delimitation. For example, if
sample sizes are small or there are few gaps
between taxa (despite a large difference in
range of mean values between species), the
characterwill receive little or no weight, even
though these same restrictions are not ap-
plied to qualitatively coded characters.

In some ways, these three scaling methods
do not really represent differential character
weighing. Instead, they represent different
ways of maintaining equal weights among
characters, with each method based on a dif-
ferent concept of what the common currency
of equal weighting should be, namely, over-
all character length (between-character scal-
ing), transformations between �xed, discrete
states (between-state scaling), or transforma-
tions between statisticallydistinct states (sta-
tistical scaling). The best overall currency is
at present unclear. (Note: All three scaling
methods are also applicable to data that are
gap-weighted by Thiele’s [1993] method.)
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The uncertainty over the best scaling
method, combined with the sensitivity of
phylogenetic results to different scaling
methods (Fig. 4), might be seen as a seri-
ous drawback of treating data quantitatively.
But this is a case where quantitative anal-
ysis calls for explicit treatment of a gen-
eral problem that is present but typically ig-
nored with qualitative coding. For example,
without quantitative methods for delimiting
character states, a phylogenetic analysis of

FIGURE 4. Theimpactof different weighting schemes
for meristic characters on phylogenetic hypotheses
for hoplocercid lizards. (a) Between-character scaling
(meristic characters have the same maximum length
as �xed, binary characters). (b) Between-state scaling
(changes between numerically adjacent, �xed, trait val-
ues of meristic characters have the same length as �xed,
binary characters). Numbers at nodes indicate boot-
strap values >50%. Hoplocercid taxon names are in
bold face. Outgroup taxa include acrodontans (Leiolepis,
Physignathus), polychrotids (Polychrus, Pristidactylus),
and iguanids (Brachylophus, Ctenosaura, Dipsosaurus).
Monophyly of acrodontans, polychrotids, and iguanids
was constrained during tree searches but not the rela-
tionships within or between them. See Appendices 1¡3
at www.systbiol.org and Wiens and Etheridge (unpubl.
manuscript) for further details.

qualitatively coded data can be in�uenced
strongly by a single character, if the author
chooses to divide the character into a large
number of states (in an analysis in which
all character state transformations are given
equal weight).

AN EMPIRICAL EXAMPLE OF
QUANTITATIVE CODING AND SCALING

I have recently applied the step-matrix
gap-weighting approach outlined in this pa-
per to a phylogenetic analysis of morpho-
logical data in hoplocercid lizards (Wiens
and Etheridge, unpubl. manuscript). This
is a family of 10 Neotropical species that
are currently divided among three genera
(Enyalioides, Hoplocercus, Morunasaurus). A
total of 46 informative characters (squama-
tion, coloration, osteology) were scored for
10 ingroup taxa and 7 outgroup taxa. Sev-
enteen characters were qualitative and in-
traspeci�cally invariable, 19 were qualita-
tive and polymorphic, 8 were meristic, and
2 were morphometric. Qualitative polymor-
phic characters were coded with the step-
matrix frequency approach (Wiens, 1995,
1999; Berlocher and Swofford, 1997), and
meristic and morphometric characters were
coded with the step-matrix gap-weighting
method described in the present paper.
Two methods for scaling meristic characters
were used: between-character scaling and
between-state scaling. The third method (sta-
tistical scaling) outlined in the previous sec-
tion was not attempted because of the very
small sample sizes available for most species
of hoplocercids, particularly for osteological
characters. The list of characters, the traits
means and frequencies for quantitative and
polymorphic characters, and the coded data
matrix are available as Appendices 1–3 at
the Society of Systematic Biologists website
(www.systbiol.org).

Several authors have stated that charac-
ters with extensively overlapping values be-
tween species (i.e., polymorphic, meristic,
and morphometric characters) do not con-
tain useful phylogenetic information and
should therefore be excluded from phyloge-
netic analyses (e.g., Pimentel and Riggins,
1987; Stevens, 1991). I tested whether or
not these three data types contained sig-
ni�cant phylogenetic information relative to
random data, using randomization tests on
two measures of phylogenetic signal: the g1
index (Hillis and Huelsenbeck, 1992) and

http://www.systbiol.org
http://www.systbiol.org
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the consistency index (ci; Kluge and Farris,
1969). Seven data sets were analyzed: (1)
all characters (meristic characters weighted
with between-state scaling), (2) all characters
(meristic characters with between-character
scaling), (3) meristic characters only (with
between-state scaling), (4) meristic charac-
ters only (with between-character scaling),
(5) �xed characters only, (6) polymorphic
characters only, and (7) morphometric char-
acters only (with between-character scaling).
Each data set was randomized 100 times, by
randomly shuf�ing states among taxa within
a given character (using a program supplied
by J. P. Huelsenbeck). The number of states
and the ordering and weighting of states
and characters were maintained in each of
the randomized data sets. The ci for each
randomized data set was obtained by us-
ing a heuristic search to �nd the shortest
tree (with tree-bisection-reconnection branch
swapping and 20 random addition sequence
replicates per search). The g1 index for each
randomized data set was calculated by tak-
ing a random sample of 10,000 trees from
among all possible trees for that data matrix.
For each of the original seven data sets, the
99% con�dence interval of the mean g1 index
and ci was calculated for the 100 randomized
data matrices. If the observed statistic (for the
nonrandomized data) fell outside of this con-
�dence interval, the data set was considered
to contain signi�cant, nonrandom phyloge-
netic information. To con�rm that the phy-
logenetic structure occurred within the in-
group, the outgroup taxawere removed from
all data sets for these analyses. In addition to
the analyses of phylogenetic structure, I also
qualitatively comparedthe averageci’s of the
different character types (i.e., �xed, polymor-
phic, meristic, morphometric) in the trees
from the between-state scaling and between-
character scaling. Step matrices were con-
structed using MacClade, and phyloge-
netic analyses were conducted with PAUP¤

(version 4.0.0d63). Support for individual
branches was evaluated with nonparametric
bootstrapping (Felsenstein, 1985; Hillis and
Bull, 1993), using 500 pseudoreplicates per
analysis with �ve random-additionsequence
replicates per bootstrap pseudoreplicate.

Different methods for scaling meristic
characters produced very different trees
(Fig. 4). With between-character scaling, the
tree within hoplocercids is highly incongru-
ent with previous taxonomy but relatively

similar to the only other phylogenetic study
of the group (Etheridge and de Queiroz,
1988), with the genus Enyalioides forming a
paraphyletic series of lineages at the base of
the tree leading to a clade containing the gen-
era Morunasaurus (which is paraphyletic)and
Hoplocercus. In the tree based on between-
state scaling, Hoplocercus and a paraphyletic
Morunasaurus are at the base, and Enyalioides
is a well-supported monophyletic group.
These trees also differ in numerous place-
ments of individual species of Enyalioides,
although many branches of both trees (ex-
cept for the monophyly of the family and the
branch separating Enyalioides from the other
genera) are relatively weakly supported.

The data sets have signi�cant phyloge-
netic structure using both scaling methods
as do the separately analyzed meristic, �xed,
polymorphic, and morphometric characters
(Table 1). Much of this signal may be concen-
tratedin a few nodes,because manybranches
of both trees are weakly supported. Nev-
ertheless, the average ci values among the
different types of characters are generally
similar (Table 2). Regardless of the scaling
method used, the meristic characters have
the highest ci values and the morphometric
characters have the lowest.

This study demonstrates that the quantita-
tive character data for these lizards do con-
tain signi�cant phylogenetic information,

TABLE 1. Results of randomization tests showing
signi�cant phylogenetic structure in different types of
morphological data from hoplocercid lizards, using
two statistics ( g1 and consistency index [ci]). The crit-
ical value refers to the 99% con�dence interval from
100 randomized data matrices. When observed values
for a given statistic fall outside the con�dence interval
for randomized data, the data are considered to contain
signi�cant phylogenetic structure.

Observed Critical
Data type Statistic value value

All data (between- g1 ¡0.985 ¡0.214
state scaling) ci 0.625 0.565

All data (between- g1 ¡0.925 ¡0.250
character scaling) ci 0.631 0.555

Meristic (between- g1 ¡0.559 ¡0.304
state scaling) ci 0.700 0.672

Meristic (between- g1 ¡0.930 ¡0.530
character scaling) ci 0.692 0.646

Polymorphic g1 ¡0.609 ¡0.240
ci 0.577 0.510

Fixed g1 ¡0.646 ¡0.428
ci 0.621 0.576

Morphometric g1 ¡1.014
ci 0.829 0.778
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TABLE 2. Consistency indices of the different types
of characters for the trees in Figure 4 (n D number of
parsimony-informative characters of each type).

Character n Between-state Between-character
type scaling scaling

Fixed 17 0.439 § 0.238 0.308 § 0.128
(0.167 ¡ 1.000) (0.167 ¡ 0.500)

Polymorphic 19 0.406 § 0.208 0.316 § 0.237
(0.167 ¡ 0.945) (0.142 ¡ 0.945)

Meristic 8 0.490 § 0.057 0.349 § 0.059
(0.417 ¡ 0.599) (0.258 ¡ 0.417)

Morphometric 2 0.390 § 0.110 0.307 § 0.082
(0.312 ¡ 0.467) (0.249 ¡ 0.365)

at least when coded with step matrices. The
desire to avoid “continuous” variation is one
of the mostwidely cited criteria for excluding
characters in morphological phylogenetic
studies (Poe and Wiens, 2000), and many au-
thors have condemned the use of overlap-
ping quantitative character data in phylo-
genetic analysis (e.g., Pimentel and Riggins,
1987;Stevens, 1991). Yet, the only other study
to test statistically for phylogenetic structure
(or lack thereof) in such data was Thiele’s
(1993) study in plants (genus Banksia). Thiele
(1993) also found signi�cant phylogenetic in-
formation in the quantitative characters he
examined, and coded these characters with a
method (gap-weighting with bins) similar to
the step-matrix approach used in the present
study. The results also show that levels of
homoplasy in the meristic and morphome-
tric data can be similar to those observed in
the qualitative characters. In fact, the meris-
tic characters are the least homoplastic set of
characters in this analysis. The results of this
study and the study of Thiele (1993) sup-
port the inclusion of overlapping meristic
and morphometric data in phylogeny recon-
struction.

SUMMARY

Many of the characters used by mor-
phological systematists describe variation
in continuous, quantitative traits, regardless
of whether these traits are coded quantita-
tively or not. Given this view, there may
be many advantages to treating these char-
acters explicitly as continuous quantitative
characters, and I have proposed new coding
and scaling methods to implement this ap-
proach. Much work remains to be done on
testing the accuracy of different coding and
scaling methods and comparing the accu-

racy of parsimony, distance, and likelihood
methods for quantitative traits. Congruence
analyses (e.g., Wiens, 1998), which allow
phylogenetic accuracy to be addressed with
empirical data sets, should be particularly
useful in this area.
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