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ABSTRACT

Papers on sexual selection often highlight the incredible diversity of sexually selected traits across animals. Yet, few studies
have tried to explain why this diversity evolved. Animals use many different types of traits to attract mates and outcom-
pete rivals, including colours, songs, and horns, but it remains unclear why, for example, some taxa have songs, others
have colours, and others horns. Here, we first conduct a systematic survey of the basic diversity and distribution of dif-
ferent types of sexually selected signals and weapons across the animal Tree of Life. Based on this survey, we describe
seven major patterns in trait diversity and distributions. We then discuss 10 unanswered questions raised by these pat-
terns, and how they might be addressed. One major pattern is that most types of sexually selected signals and weapons
are apparently absent from most animal phyla (88%), in contrast to the conventional wisdom that a diversity of sexually
selected traits is present across animals. Furthermore, most trait diversity is clustered in Arthropoda and Chordata, but
only within certain clades. Within these clades, many different types of traits have evolved, and many types appear to
have evolved repeatedly. By contrast, other major arthropod and chordate clades appear to lack all or most trait types,
and similar patterns are repeated at smaller phylogenetic scales (e.g. within insects). Although most research on sexual
selection focuses on female choice, we find similar numbers of traits (among sampled species) are involved in male con-
tests (44%) and female choice (55%). Overall, these patterns are largely unexplained and unexplored, as are many other
fundamental questions about the evolution of these traits. We suggest that understanding the diversity of sexually selected
traits may require a shift towards macroevolutionary studies at relatively deep timescales (e.g. tens to hundreds of millions
of years ago).
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I. INTRODUCTION

Dozens, if not hundreds, of papers on sexual selection begin
in much the same way. They start off by highlighting the
incredible diversity of sexually selected traits across animals,
often referencing Andersson’s (1994) classic book. This diver-
sity includes bright colours, long tails, complex songs, elabo-
rate dances, and massive horns (Fig. 1). Yet, despite being
mentioned so frequently, this diversity itself has actually gone
largely unexplained. Here, we will outline this general prob-
lem and several other fundamental but unresolved questions
about the evolution of sexually selected traits.

Sexually selected traits can differ in many ways. First, sex-
ually selected traits can have different functions, such as
attracting females or repelling rival males. Second, they can
involve different sensory modalities, including visual
(e.g. colour), acoustic (e.g. songs), olfactory
(e.g. pheromones), and tactile traits (e.g. horns) used as
weapons during fights over access to mates. Third, sexually
selected traits can include many different types. That is, even
for a single function (e.g. attracting females) and a single sen-
sory modality (e.g. visual), there can be many different kinds
of traits (e.g. colours, elongated tails, head ornaments, dances).
Fourth, a trait can have many different forms within and

Fig. 1. Examples of the diversity of sexually selected traits in animals (left to right): top: songs and colouration in warblers, colouration
in jumping spiders, exaggerated eyespans in stalk-eyed flies, elongated tails in swordtail fishes; middle: enlarged claws in fiddler crabs,
calls in frogs, cheek flanges in primates, colouration in damselflies; bottom: wattles in fowl, antlers and calls in elk, colours and
pheromones in butterflies, neck frills in agamid lizards. All photos from Wikimedia Commons. Photo credits: Wolfgang Wander,
Thomas Shahan, Jojo Cruzado, Loury Cédric, Wilfredo R. Rodriguez H., Vikram Gupchup, Eric Kilby, Alan Schmierer,
Muhammad Mahdi Karim, Luc Viatour, Dinesh Valke, Miklos Schiberna.
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among species, such as the remarkable diversity in colouration
among African cichlids (Maan & Sefc, 2013), call structure
among crickets (Otte, 1992), and horn location among dung
beetles (Emlen et al., 2005). Herein, we focus specifically on
functions, sensory modalities, and types of traits, because these
levels of variation are relatively understudied and challenging
to understand.

Many papers mention the diversity of sexually selected
traits, but few try to explain it. At some level, this is perfectly
understandable: elucidating the mechanisms of sexual selec-
tion within species is an exciting challenge, and clearly diffi-
cult enough. Remarkable progress has been made, and we
now have a detailed understanding of many classic model sys-
tems, including guppies (Houde, 1997), red deer (Clutton-
Brock, Guinness & Albon, 1982), túngara frogs (Ryan,
1985), house finches (Hill, 2002), and crickets (Zuk & Sim-
mons, 1997). However, broad-scale patterns in the evolution
and distribution of sexually selected traits across the animal
Tree of Life remain largely unexplored. At finer scales, even
for well-studied taxa (e.g. birds), the factors that explain the
evolution of different trait types among species are poorly
understood.

Our review is not simply a summary or call for phyloge-
netic studies of sexual selection. In fact, researchers have
been using phylogenies to study these traits for the last
30 years (e.g. Basolo, 1990b), but typically among closely
related species. Instead, we emphasize the patterns and
unanswered questions that arise from considering deeper
phylogenetic scales.

II. DOCUMENTING THE DIVERSITY AND
DISTRIBUTION OF SEXUALLY SELECTED
TRAITS

A first step towards understanding the diversity of sexually
selected traits is to document that diversity. For example,
what types of traits are found in which clades? To our knowl-
edge, this diversity has not been systematically reviewed
across animals. Andersson’s (1994) book reviewed all traits
known at the time, but was not necessarily systematic
(e.g. no search methods given). A more recent book reviewed
sexual dimorphism across animals (Fairbairn, 2013), but not
different types of signals and weapons. Rico-Guevara &
Hurme (2019) recently surveyed intrasexually selected
weapons across animals, but not traits used in mate choice.

We systematically surveyed the literature for sexually
selected signals and weapons across animal phyla (methods,
full results, and references are provided as online Supporting
information in Appendices S1–S3). Following Andersson
(1994), the main criteria for including traits were: (i) a signif-
icant relationship between that trait and mating success; and
(ii) an identified mechanism of sexual selection (i.e. mate
choice, contest competition). Our goal was not to include
every case of sexual selection in every species, nor to provide
an unbiased sampling of species within clades. Instead we

highlight the diverse types of traits and their distribution
among major clades. Moreover, bias towards more well-
studied species within clades should not be problematic. Spe-
cifically, because we focus on clades above the level of fami-
lies, it should not matter that some species in a family are
more likely to be studied than others (again, we are not esti-
mating the frequency of traits among species within clades).
Conversely, our results would likely misrepresent the distri-
bution of traits among clades if we only included randomly
sampled species, because relatively few species have been
studied for sexual selection. However, see Appendix S1 for
caveats about some patterns.

We define a sexually selected trait as a character associated
with differential mating success of reproductively mature
conspecifics (e.g. Andersson, 1994). Therefore, we did not
include traits used exclusively for species or sex recognition.

We also excluded two important classes of traits, given our
emphasis on signals and weapons. First, we excluded overall
body size and sexual size dimorphism. Body size is a frequent
target of sexual selection in animals (Andersson, 1994; Hunt
et al., 2009), but does not necessarily evolve primarily as a sig-
nal or a weapon (unlike most other traits that we focus on
here). Furthermore, our goal is to describe the diversity of
types of traits. Thus, excluding one type of trait should not
overturn our conclusions. Second, we excluded postcopula-
tory traits (e.g. enlarged testes, complex genitalia), which
may confer a fitness advantage in the context of sperm com-
petition or cryptic female choice (Eberhard, 1996; Birk-
head & Møller, 1998; Simmons, 2001). These traits are not
necessarily signals or weapons. In summary, we focus on a
somewhat restricted set of traits (i.e. precopulatory signals
and weapons, excluding body size).

III. GENERAL PATTERNS IN TRAIT DIVERSITY
AND DISTRIBUTION

Our survey (Table 1; Appendix S2) suggests several intrigu-
ing patterns. First, these traits are absent from most animal
phyla (Fig. 2). Among the 34 currently recognized animal
phyla, these traits appear to be present in only four: Arthro-
poda, Chordata, Mollusca, and Rotifera. Thus, even though
it is common to talk about sexually selected traits as present
‘across animals’most signals and weapons are actually docu-
mented in only a handful of phyla. Furthermore, many phyla
that seem to lack these traits are relatively diverse, mobile,
conspicuous, and well studied (e.g. Annelida, Cnidaria, Echi-
nodermata, Nematoda, Onychophora, Platyhelminthes).
Even if further studies (or other criteria) yield additional traits
in some of the other 30 phyla, there is still a striking disparity
in trait distribution among phyla. Importantly, if we include
documented sexually selected traits related to body size and
postcopulatory selection (Appendix S1), the distribution of
these traits among phyla remains basically unchanged
(i.e. these excluded trait types have been documented mostly
in arthropods and chordates).
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Second, even within phyla having these traits, their distri-
bution is highly restricted (Appendix S2). For example, in
Rotifera, we found a single trait (pheromone) in one species.
In Mollusca, these traits are documented in only one class
(Cephalopoda) among seven commonly recognized classes.
Sexually selected signals and weapons are widespread in
Chordata and Arthropoda, but many classes still appear to
lack these traits (6 of 13 in Chordata, 9 of 12 in Arthropoda).
Thus, these traits appear to be surprisingly rare among major
animal clades.

Third, the diversity of these traits is clumped phylogenet-
ically, with multiple types of traits evolving within a few
major clades (Appendix S2). For example, most types of
traits (e.g. colours, calls, pheromones, enlarged structures,
and displays) have evolved in ray-finned fishes, frogs, sala-
manders, squamate reptiles (lizards and snakes), mammals,
birds, insects, malacostracan crustaceans, and arachnids
(Table 1).

Fourth, there were multiple origins of the same trait type
within these phyla (Appendix S2). Many traits seem to repre-
sent independent origins because the taxa having them are
phylogenetically isolated among taxa lacking them. For
example, in Chordata, acoustic signals in ray-finned fishes,
frogs, mammals, turtles, and birds most likely represent sep-
arate origins (Chen & Wiens, 2020). Similarly, conspicuous
colouration apparently evolved separately in dragonflies,
wasps, beetles, flies, and butterflies. Many traits also appear
to have independent origins because the specific traits differ.
For example, in arthropods, the enlarged structures used in
contest competition differ across clades, including cerci (ear-
wigs), mandibles (ants, wasps, thrips), hindlimbs (leaf-footed
bugs), horns (beetles), antlers and stalked eyes (flies), and
claws (decapod crustaceans).

Fifth, despite the concentration of trait diversity in a lim-
ited number of clades, most species have relatively few traits
(Appendix S2). We found that only 12.7% of the species with
sexually selected traits in this survey have more than one type
(N = 28 of 220; Appendix S2). There are clearly exceptions.
For example, male dung beetles (Onthophagus taurus) have
horns, behavioural displays, and pheromones (Appendix
S2). But even these exceptions appear to have only a subset
of the traits present in the major clades to which they belong
(Table 1). To our knowledge, no single species has been
documented to have sexually selected colours, calls, phero-
mones, enlarged structures, and behavioural displays. In
our survey, the species that come closest include some birds
(e.g. Phasianus colchicus with elongated tail and head feathers,
colours, and behavioural displays) and fish (e.g. Gasterosteus
aculeatus with colours, pheromones, and behavioural dis-
plays). Of course, further research may reveal additional
traits in many species (e.g. pheromones). Nevertheless, the
dominant pattern is apparently for most species to have few
traits, and for different traits instead to be present in different
species.

Sixth, contest competition and mate choice are both wide-
spread (Appendix S2). We found that a similar percentage of
traits are used in male contests (44%) versus female choice

(55%; N = 272 traits, among 213 species; Appendix S4).
The 272 include 26 cases in which the same trait is used for
both functions in the same species, and 28 species with mul-
tiple trait types (methods in Appendix S1). Including nine
traits among seven species in which the trait was used for
male mate choice and/or female contest competition yields
similar values (44% versus 56%, N = 281). Recent reviews
have highlighted the idea that most research on sexual selec-
tion has focused on female choice over contest competition
(McCullough, Miller & Emlen, 2016; Tinghitella et al.,
2018). Here, we provide evidence suggesting that male–male
competition may be nearly as important as female choice for
the origins of sexually selected traits across major animal
clades.
Seventh, many traits are used both to attract females and

repel rivals. We found at least 65 examples of a single trait
used in both mate choice and contest competition, either in
the same species or among close relatives (Appendix S5; see
also Berglund, Bisazza & Pilastro, 1996).

Table 1. Summary of the different types of sexually selected
traits present in major animal clades

Phylum Class Trait

Arthropoda Insecta Colouration, calls, pheromones,
enlarged appendages, horns,
leg ornaments, enlarged
eyespans, nuptial food gifts,
behavioural displays

Arthropoda Arachnida Colouration, vibrational calls,
pheromones, enlarged
appendages, leg ornaments,
behavioural displays

Arthropoda Malacostraca
(crabs, etc.)

Colouration, pheromones,
enlarged appendages,
behavioural displays

Mollusca Cephalopoda Colouration, behavioural
displays

Chordata Actinopterygii
(ray-finned
fish)

Colouration, calls, electric calls,
pheromones, enlarged or
elongated fins, tubercles,
enlarged snouts, behavioural
displays

Chordata Amphibia Colouration, calls, pheromones,
enlarged limbs, dorsal crests

Chordata Squamata
(lizards,
snakes)

Colouration, pheromones, head
ornaments (crests, dewlaps),
behavioural displays

Chordata Aves Colouration, calls, pheromones,
elongated feathers, spurs,
fleshy ornaments (shields,
wattles, combs), behavioural
displays

Chordata Mammalia Colouration, calls, pheromones,
enlarged limbs, tusks, antlers,
horns, head ornaments (manes,
crests, cheek flanges),
behavioural displays

Rotifera Monogononta Pheromone
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IV. UNANSWERED QUESTIONS ABOUT THE
EVOLUTION OF SEXUALLY SELECTED TRAITS

The patterns observed in our survey raise many questions for
future research. Most of these questions have not been
addressed or even posed in previous studies (although a few
have been). We do not resolve any of these questions here,
but we do outline some potential hypotheses and some ways
in which they might be tested.

(1) Why do so many clades lack sexually selected
signals and weapons?

A striking pattern from our survey is that most animal phyla
appear to lack sexually selected signals and weapons (Fig. 2).
A trivial explanation would be that most animal phyla lack
sexual reproduction. However, sexual reproduction is largely
ubiquitous among these clades, even if some species are capa-
ble of asexual reproduction (review in Jezkova&Wiens, 2017).

Instead, a more general explanation is that conditions that
favour sexually selected signals and weapons are rare among
major animal clades. These traits are expected to evolve

when there is intense competition for access to reproduction,
driven by skewed operational sex ratios (Emlen & Oring,
1977; Kvarnemo & Ahnesjo, 1996). They may also evolve
when there are steep Bateman gradients (e.g. Arnold, 1994;
Jones, 2009; Janicke et al., 2016). Many phyla lacking sexually
selected traits (Fig. 2) are marine or parasitic (Jezkova &
Wiens, 2017). Thus, the primary challenge for individuals
in these clades may be simply to locate a mate, and so such
traits may do little to improve a male’s mating success
(Kokko & Rankin, 2006). Interestingly, many phyla lacking
these traits may solve the problem of mate scarcity by being
simultaneous hermaphrodites (Fairbairn, 2013; see fig. 1 of
Jezkova & Wiens, 2017). Many phyla lacking these traits
are also marine clades with broadcast spawning and thus lim-
ited opportunities for male–male competition and precopu-
latory female choice. Yet, simply being marine seems
insufficient to explain this pattern, given the many traits in
marine ray-finned fishes (calls, colouration, enlarged struc-
tures, pheromones, behavioural displays; Appendix S2).
These hypotheses can be tested using phylogenetic compara-
tive methods, including Pagel’s (1994) test for dependent evo-
lution of discrete traits.

Fig. 2. The distribution of six major types of sexually selected traits among 28 animal phyla. Filled boxes indicate that a trait type is
present in at least one species in that phylum (irrespective of prevalence), whereas open boxes indicate that the trait is absent from that
phylum (as far as is currently known). There are many ways to subdivide most of these trait types (e.g. there are many different types of
enlarged structures, and they can be used as visual signals or weapons). Details on the specific traits and their distributions within phyla
are given in Appendix S2. The time-calibrated phylogeny (Wiens, 2015) includes 28 of the 34 commonly recognized phyla. These
traits are also apparently absent in the six phyla not shown here (Appendix S2).
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(2) Why do some phyla have so many different kinds
of sexually selected traits?

Our results suggest that most types of signals and weapons
evolved convergently in arthropods and chordates (Fig. 2).
The presence of different sensory systems may be one of
the most important factors that drives this pattern. Many
phyla lacking these traits lack vision and hearing. By con-
trast, many arthropods and chordates share vision, hearing,
and olfaction. These are the two phyla in which diverse sig-
nals and weapons evolved (Fig. 2). Thus, different types of
traits may be clumped across the animal Tree of Life
because different sensory systems are. Eyes (lens-bearing or
compound) are present in only four phyla (Annelida,
Arthropoda, Chordata, Mollusca), although photoreceptors
in general are more widespread (16 of 28 phyla; Jezkova &
Wiens, 2017). Olfaction is also widespread, but it is unclear
if it has been surveyed widely across phyla. Minimally, olfac-
tion occurs in arthropods, chordates, molluscs, and nema-
todes (Eisthen, 2002). Hearing may be more restricted,
and is apparently confined to arthropods (where it evolved
~19 times; Yager, 1999) and vertebrates (where it evolved
once; Popper & Fay, 1997). Surprisingly, hearing seems to
have evolved only in phyla with vision and olfaction. Over-
all, the clustered distribution of different types of traits may
arise because of a clustered distribution of sensory systems.
Explaining if and why different sensory systems are corre-
lated in their distribution should be an interesting area for
future research.

Future studies can also use phylogenetic approaches to test
how closely the origin of different types of traits is related to
their corresponding sensory systems. For example, vision
(photoreceptors and/or eyes) is present in many phyla appar-
ently lacking visual signals (e.g. Acoela, Annelida, Bryozoa,
Chaetognatha, Cnidaria, Echinodermata, Kinorhyncha,
Nematoda, Nematomorpha, Onychophora, Platyhel-
minthes, Rotifera, Tardigrada; Jezkova & Wiens, 2017).
Thus, visual signals are dependent on vision, but vision and
visual signals might still be only weakly correlated across
taxa. By contrast, hearing and acoustic signals may be more
closely tied. Ancestral-state reconstructions on time-
calibrated phylogenies could be used to quantify the ‘waiting
time’ between when a sensory system originates in a given
clade and the earliest origin of the corresponding signal,
and compare these waiting times across sensory systems and
clades.

The idea that sensory systems are important in shaping the
evolution of sexually selected traits is well established
(e.g. Endler, 1992; Endler & Basolo, 1998; Boughman,
2002; Price, 2017). However, this idea is generally applied
to different trait forms among closely related species
(e.g. blue versus red nuptial colouration in cichlids; Seehausen
et al., 2008). Here, we suggest that the type of sensory systems
present in different phyla may help shape which types of
traits are present in which clades, and the overall clumping
of traits among phyla. Nevertheless, this is just one hypothesis
that may potentially explain this pattern.

(3) Why do some clades within phyla have so many
traits?

Just as sexually selected traits seem to be clumped in certain
phyla (Fig. 2), they also appear to be clumped in certain
clades within phyla (Table 1). Thus, a few clades have many
different types, whereas most others have few or none
(Appendix S2). For example, among insect orders, Coleop-
tera (beetles) and Diptera (flies) each have 10 types of traits
(e.g. in Coleoptera: horns, enlarged mandibles, enlarged
hindlegs, enlarged forelegs, enlarged antennae, elongated
rostra, colouration, pheromones, drumming displays, and
flashing displays). By contrast, five orders have only one type,
and 16 appear to have none (Appendix S6). Similarly, among
bird orders, Passeriformes (perching birds), Galliformes
(landfowl), and Charadriiformes (shorebirds) each have at
least eight different types of traits documented (e.g. in Galli-
formes: elongated tail and head feathers, plumage coloura-
tion, flesh colouration, tarsal spurs, fleshy head ornaments,
calls, and tidbitting displays). Yet, 11 orders appear to have
none explicitly documented (Appendix S6).
The least interesting explanation for these patterns is that

clades with more species have more types of traits. Thus, if
clade A has a million species and clade B has 10, we would
expect all types to evolve in A and none in B, by chance alone.
But there seems to be more to this pattern than a simple rela-
tionship between species richness and trait diversity. For
example, despite their high trait diversity, Galliformes (~300
species) are not exceptionally species rich relative to other bird
orders (Gill & Donsker, 2018) or other animal clades.
We speculate that certain clades have accelerated rates of

trait origins relative to their age and species richness. These
high rates might be associated with individual traits
(e.g. multiple origins of conspicuous colours in birds) and
may be correlated across traits (e.g. accelerated rates in the
same clades for different traits). These hypotheses can be tested
using maximum likelihood to estimate transition rates for each
trait in each clade (e.g. orders of birds), given a time-calibrated
phylogeny and trait data within each clade. Phylogenetic
ANOVA and regression can then be used to test whether rates
are significantly higher in some clades, and whether rates are
correlated between pairs of traits among clades.
This research could then open the door to testing which

ecological and evolutionary factors are correlated with these
accelerated rates. Thus, certain mating systems may promote
trait origins (Emlen & Oring, 1977; Kvarnemo & Ahnesjo,
1996; Kokko, Klug & Jennions, 2012). Other relevant factors
may include habitat or genetic systems (e.g. Reeve & Pfennig,
2003; Mank et al., 2006), and trade-offs between pre- and
postcopulatory sexual selection (Pollux et al., 2014; Simmons,
Lüpold & Fitzpatrick, 2017)

(4) Why do different species have different types of
traits?

The observation that different species often have different
types of traits may be fundamental to explaining trait
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diversity among taxa. Given this, the signalling environments
in which taxa occur may be one key to understanding their
different traits. An obvious example is diel (day–night) activ-
ity patterns. Nocturnal activity may favour acoustic or chem-
ical signals over visual signals, because acoustic and chemical
signals can function in darkness (Kronfeld-Schor & Dayan,
2003). Many taxa with acoustic traits are nocturnal, includ-
ing most bats, frogs, crickets, and moths (Appendix S2). Fur-
thermore, acoustic signals in some diurnal species may have
originated in nocturnal ancestors (e.g. calls in the largely
diurnal dendrobatid frogs, whereas frogs are ancestrally noc-
turnal; songs in birds; Anderson & Wiens, 2017). A recent
analysis supports the hypothesis that nocturnal activity
favours the origins of acoustic communication in terrestrial
vertebrates, including frogs, geckoes, crocodilians, mammals,
and birds (Chen & Wiens, 2020). The idea that signalling
environments influence signal evolution and sensory systems
is widespread (e.g. Endler, 1992; Endler & Basolo, 1998;
Boughman, 2002; Price, 2017). But again this idea is generally
applied to trait form among close relatives. The relationship
between trait origins and signalling environments (e.g. diel
activity) can be tested using phylogenetic approaches
(e.g. Pagel, 1994), especially within major clades (e.g. among
families of birds, mammals, squamates, ray-finned fish, spi-
ders, insects, and crustaceans; Table 1).

Most animals must also locomote and avoid predators in a
given environment, and this might also influence which traits
they evolve. For example, in birds, few (if any) have bony
horns used in male combat (Appendix S2). But such horns
occur in many non-flying vertebrates (e.g. chamaeleonid liz-
ards, artiodactyl mammals), and other traits used in male
contests are widespread in birds (Appendix S2). One poten-
tial explanation is that constraints related to flight
(e.g. thinner bones) influence which weapons evolve (e.g. no
heavy, bony horns used in fights).

Similarly, constraints related to predation may help deter-
mine which traits evolve in which lineages. For example, in
lizards, dorsal crests and cranial horns tend to be absent in
species that escape predators by hiding in crevices and bur-
rows (Ord & Stuart-Fox, 2006). Instead, these species often
have bright male colouration (e.g. Platysaurus). By contrast,
enlarged male crests and horns have evolved repeatedly in
arboreal lizards, which do not generally flee into crevices to
escape predators (e.g. in agamids, chamaeleonids, coryto-
phanids, iguanids; Pough et al., 2016). Both colours and horns
can be sexually selected in lizards (Appendix S2). Thus, dif-
ferent anti-predator strategies may influence which traits
evolve in which lineages, potentially contributing to trait
diversity. More broadly, trade-offs between sexually selected
traits and other types of traits may help explain which traits
evolve in which taxa.

(5) Does mate choice or mate competition explain
most trait origins?

Another potential explanation for why different traits evolve
in different taxa is that different traits are associated with

different functions (e.g. mate choice versus competition). For
example, horns and antlers are often used to fight rivals,
whereas elongated tails and conspicuous colouration are
often used to attract mates (Appendix S2). At the same time,
this dichotomy is not so simple. Instead, we found many
examples (Appendix S5) in which the same trait (either in
the same species or close relatives) is used both to deter rivals
and attract mates (see also Berglund et al., 1996). Thus, differ-
ent trait functions may explain only some trait diversity
among animals.

These patterns also suggest a related question: in what
context did most sexually selected traits initially evolve?
Some authors have proposed that traits are likely to evolve
first in the context of male–male competition, as signals of a
male’s fighting ability or social dominance, and then subse-
quently become co-opted for use in mate choice (Berglund
et al., 1996). This ‘armament–ornament’ hypothesis assumes
that signals used in aggressive interactions are more honest
because unreliable signals of fighting ability will generate
immediate fitness costs in combat (Berglund et al., 1996).
Few studies have tested this hypothesis, but there is evidence
of aggressive signals being co-opted for courtship
(e.g. ‘skrraa’ calls in bowerbirds; Borgia & Coleman, 2000),
and courtship signals co-opted for aggression (e.g. ‘vertical
bar’ pigment patterns in swordtail fish; Morris, Tudor &
Dubois, 2007). More research is needed to determine if there
are general patterns in which function tends to evolve first,
and if differences in function help drive trait diversity (i.e. if
certain traits tend to have one function only).

Overall, one of the most basic questions about sexually
selected traits remains unanswered: what function is typically
associated with their origins? This question may be unre-
solved because it requires data on trait function for many spe-
cies, combined with phylogenetic information. Although
most sexual selection research has focused on mate choice
(McCullough et al., 2016; Tinghitella et al., 2018), our survey
suggests that both functions might have similar importance in
explaining why these traits arise (Appendix S4).

(6) Why do traits evolve through mate choice versus
mate competition, and as signals versus weapons?

The observation that traits often have different functions
raises the question: what ecological and evolutionary factors
might explain why a trait evolves in association with one
function instead of another (i.e. mate choice versusmate com-
petition; signal versus weapon for mate competition)? For
example, do some environments or ecologies favour one
mechanism over the other (Andersson et al., 2002), such as
weapons evolving more frequently in terrestrial and herbivo-
rous taxa (Rico-Guevara & Hurme, 2019)? Are weapons the
default, with ornaments evolving via female choice primarily
when females are able to avoid male coercion (Pradhan &
van Schaik, 2009)? These questions can be addressed using
ancestral reconstructions to estimate initial trait functions,
and using phylogenetic tests to relate trait functions to other
ecological and evolutionary factors.
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(7) Trading off or piling on: are traits positively or
negatively related among species?

Another unresolved question is whether sexually selected sig-
nals and weapons tend to be negatively associated (i.e. trade-
offs) or positively associated among species, and whether this
depends on phylogenetic scale. Our survey suggests that dif-
ferent trait types are positively related among phyla (Fig. 2)
and within phyla (Table 1). However, studies of more closely
related species have found conflicting patterns. For example,
there appears to be a trade-off between chemical signalling
(pheromones) and visual signalling (colourful skin pigmenta-
tion) in Old World monkeys and apes (Liman & Innan,
2003). Further, song elaboration is negatively correlated with
colourful plumage in some birds (e.g. Badyaev, Hill & Weck-
worth, 2002), but not others (Ornelas, González & Espinosa
de los Monteros, 2009; Mason, Shultz & Burns, 2014).
Future studies should test explicitly for positive versus negative
relationships between traits at different scales using phyloge-
netic tests, and address why certain traits are favoured over
others in different taxa (for negative relationships) and why
some types occur together (for positive relationships). Some
hypotheses described above may be relevant to explaining
both negative relationships (e.g. different signalling environ-
ments) and positive relationships (e.g. clustering of sensory
systems in certain phyla). Positive relationships among traits
among species might also be related to the origins of multiple
traits within species (see Section IV.(8)).

(8) How is the presence of multiple traits within
species related to trait diversity within clades?

Our survey indicates that some species have multiple trait
types (e.g. birds with colours, long feathers, and songs),
whereas others have just one (e.g. wrasses with only colours).
Understanding why a single species has multiple signals may
help explain the overall diversity of traits and their uneven
distribution among species.

At least four hypotheses have been proposed to explain the
evolution of multiple sexual signals [multiple message, redun-
dant signal, unreliable signal (Møller & Pomiankowski, 1993);
multiple receiver (Andersson et al., 2002)]. These hypotheses
are not mutually exclusive, and there is support for more than
one hypothesis in several systems (e.g. Møller & Pomian-
kowski, 1993; Taff et al., 2012; Guindre-Parker et al., 2013).

Importantly, these hypotheses suggest that once a single
trait evolves, other traits may follow, so extant species might
differ in trait diversity because they represent different time-
points in this overall process. However, the process might
also work in the opposite direction. Thus, multiple traits
might evolve within a single ancestral species, but then traits
might be lost in various lineages, generating variation in the
number of traits in each species across the clade. These sce-
narios could potentially be distinguished with ancestral-state
reconstructions (i.e. to determine whether the earliest ances-
tral species with each trait in a clade most likely had multiple
traits or single traits). These scenarios also raise the question

of whether gains or losses are more prevalent in the evolution
of sexually selected traits.

(9) Are sexually selected traits more frequently
gained or lost?

Our survey implies that the same types of traits have evolved
repeatedly, both within and among clades (Table 1), suggest-
ing a strong pattern of repeated gains. Yet, an older review
noted that sexually selected traits are frequently lost (Wiens,
2001). However, the examples in that review were from shal-
low phylogenetic scales (within families or genera), whereas
our examples of repeated gains involve deeper scales (among
families, orders, and phyla). This contrast raises the possibil-
ity that there are biased patterns in trait gain and loss that
depend on phylogenetic scale. On the other hand, these pat-
terns might simply reflect random trait gain and loss. Future
studies could test for significant biases in gain and loss using
phylogenetic maximum-likelihood models (e.g. comparing
the fit of a model with unbiased rates of gain and loss to
one allowing different rates, and models with only gains or
only losses). These tests could be applied to different types
of traits, and at different phylogenetic scales.

(10) How long do sexually selected traits last?

Once they evolve, for how long do these traits persist? Can a
trait that originated hundreds of millions of years ago be
maintained to the present day? Or do traits tend to last just
a few million years, or less? Do some types last longer than
others (e.g. acoustic versus visual)? As one example of how dif-
ferent trait types might have different lifespans, we predict
that morphological traits that are effectively permanent
may incur high fitness costs (due to conspicuousness to pred-
ators, decreased locomotion, etc.) and may be more likely to
be lost macroevolutionarily. Thus, the branches on which
they are inferred to have originated should be relatively
young. By contrast, traits expressed for only limited time
periods (e.g. seasonally), especially behaviours that can be
halted when disadvantageous (e.g. calls, dances), may incur
fewer costs and might be maintained over longer timescales.
For example, acoustic signals are widespread across frogs
and birds, and these traits may have beenmaintained in these
clades over long timescales (frogs: ~200 million years; birds:
~100 million years; Chen & Wiens, 2020). On the other
hand, we do not know of permanent morphological traits that
have been maintained over similar timescales. Among the
oldest morphological traits that we know of, coloured belly
patches in sceloporine phrynosomatid lizards (Sceloporus, Uro-
saurus) have been present for ~41 million years (Wiens, 1999;
Zheng &Wiens, 2016), and coloured dewlaps have been pre-
sent in dactyloid lizards (Anolis) for ~49 million years
(Nicholson, Harmon & Losos, 2007; Zheng & Wiens, 2016).
In both families, these colour traits are largely concealed
unless used in behavioural displays, which may promote their
long-term macroevolutionary maintenance. By contrast,
conspicuous male colouration on the dorsum (i.e. constantly
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exposed) has evolved in some species in both families
(e.g. Wiens, Reeder & Nieto Montes de Oca, 1999; Muñoz
et al., 2013), but is not present in any older clades. These
examples are not intended as a formal test, and we acknowl-
edge that we may be inappropriately comparing general trait
types (i.e. acoustic signals) to specific traits (i.e. belly patches).
However, these examples do illustrate the type of information
that could be used to test these ideas more rigorously.

V. CONCLUSIONS

(1) One of the most frequent observations about sexually
selected traits is that they are diverse across animals.
Here, we summarize the diversity and distribution of
these traits across the animal Tree of Life. We describe
seven main patterns and discuss 10 unanswered ques-
tions arising from these patterns.

(2) Surprisingly, we find that most types of sexually
selected signals and weapons are not widespread
among animal clades. Instead, most trait types are
apparently absent from 88% of animal phyla, includ-
ing many phyla that are relatively common, diverse,
and well studied.

(3) These traits are also highly restricted in their distribu-
tion within phyla. Most occur only in Arthropoda and
Chordata, and are absent in many (or most) major
clades within these two phyla. Similar patterns appear
within younger groups, such as insects.

(4) Within those clades in which these traits are present,
there is often a high diversity of different trait types.
Furthermore, most trait types appear to have evolved
multiple times within these clades. Nevertheless, most
individual species appear to have relatively few traits.

(5) Despite widespread focus on mate choice in sexual
selection research, our survey implies that traits evolve
in association with mate competition almost as often as
they evolve through mate choice, and many traits are
used both to attract mates and to repel rivals.

(6) Our survey highlights several unanswered questions
about evolutionary patterns in sexually selected traits.
We propose some hypotheses to explain these patterns
and outline methods that could be used to test these
hypotheses. An obvious question is why most traits
are so uncommon among phyla. We suggest that many
phyla may lack these traits because they lack separate
sexes. Many phyla also seem to lack one or more of
the sensory systems that are associated with many sex-
ually selected signals and weapons (vision, hearing).
Interestingly, different sensory systems (e.g. visual,
acoustic, olfactory) appear to be clumped in those
phyla with a diversity of sexually selected traits
(e.g. arthropods, chordates).

(7) Our results raise numerous other questions for future
research. Do certain clades have accelerated rates of
trait origins for individual traits, or for multiple traits?

If so, why? Why do different types of traits evolve in
different taxa? Do most sexually selected traits origi-
nate in association with mate choice or mate competi-
tion? Is the evolution of these traits dominated by
repeated trait origins, multiple losses, or is it simply sto-
chastic? For how long do traits last?

(8) Overall, considering these patterns in the diversity of
sexually selected signals and weapons raises many
new questions for the field, and many new areas for
future research. Answering these basic questions and
explaining these patterns may require a shift in the
study of sexual selection towards macroevolutionary
analyses at relatively deep timescales (tens or hundreds
of millions of years ago).
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quality indicators in lekking male great bustards. Ethology 116, 1084–1098.
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BENNETT, A. T. D. & SORCI, G. (2007). Iridescent structurally based coloration of
eyespots correlates with mating success in the peacock. Behavioral Ecology 18,
1123–1131.

*LYONS, S. &MORRIS, M. (2008). Headstands: a sexually selected signal in the swordtail
fish Xiphophorus nezahualcoyotl. Behaviour 145, 1247–1262.

*MAAN, M. E. & CUMMINGS, M. E. (2009). Sexual dimorphism and directional sexual
selection on aposematic signals in a poison frog. Proceedings of the National Academy of
Sciences of the United States of America 106, 19072–19077.

MAAN, M. E. & SEFC, K. M. (2013). Colour variation in cichlid fish: developmental
mechanisms, selective pressures and evolutionary consequences. Seminars in Cell and
Developmental Biology 24, 516–528.
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