
c© The Author(s) 2011. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syr025

Point of View

Missing Data in Phylogenetic Analysis: Reconciling Results from Simulations
and Empirical Data

JOHN J. WIENS∗ AND MATTHEW C. MORRILL

Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA;
∗Correspondence to be sent to: Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA;

E-mail: wiensj@life.bio.sunysb.edu.

Received 22 May 2010; reviews returned 1 September 2010; accepted 21 February 2011
Associate Editor: Karl Kjer

This paper will attempt to resolve some controver-
sies about the effects of missing data on phylogenetic
analysis. Whether missing data are generally problem-
atic is a critical issue in modern phylogenetics, espe-
cially as wildly different amounts of molecular data
become available for different taxa, ranging from entire
genomes, to single genes, to none (e.g., fossils). Our per-
ception of the impact of missing data (or lack thereof)
may strongly influence which taxa and characters we
include in a phylogenetic analysis (Wiens 2006) and
may lead to a diversity of serious errors. For example,
if we think that missing data are problematic when
they are not, then we may exclude taxa and charac-
ters that would otherwise benefit our analyses, given
the abundant evidence that increasing numbers of both
taxa and characters can potentially improve the accu-
racy of phylogenetic analyses (e.g., Huelsenbeck 1995;
Rannala et al. 1998; Poe 2003), where accuracy is gener-
ally defined as the similarity between the estimated tree
and the correct, known phylogeny. In contrast, if miss-
ing data cells are themselves intrinsically problematic
(e.g., Huelsenbeck 1991), including taxa or characters
with many missing data cells may lead to inaccurate
phylogenetic estimates.

Several studies have explored how missing data may
impact phylogenetic analyses, using both empirical and
simulated data. Many simulation and empirical studies
now suggest that it is often possible to include taxa that
have large amounts of missing data without ill effects
(e.g., Wiens 2003b; Driskell et al. 2004; Philippe et al.
2004; Wiens et al. 2005; Wiens and Moen 2008; Lynch
and Wagner 2010; Thomson and Shaffer 2010; Wiens,
Kuczynski, Townsend, et al. 2010). However, a recent
simulation study (Lemmon et al. 2009) suggested in-
stead that missing (“ambiguous”) data are generally
problematic for phylogenetic analysis and implied that
these previous simulation and empirical studies are
therefore incorrect. They justified their study based on
the grounds that previous studies were supposedly in
conflict about the impacts of missing data (p. 131).

In this paper, we will show that the paper by Lemmon
et al. (2009; LEA hereafter) is problematic for several

reasons. First, despite their statement that previous
studies are in conflict, most simulation and empirical
results on missing data can be easily explained within
an existing theoretical framework (Wiens 2003b). Fur-
thermore, many contradictory studies suggesting that
missing data are not generally problematic for Bayesian
and likelihood analyses (given some assumptions) were
not addressed by LEA. Second, the sweeping negative
conclusions of LEA are not necessarily supported by
their results. LEA find missing data to be problematic
primarily when using sets of invariant or saturated
characters and/or when obvious rate heterogeneity is
ignored. Their results do not support the idea that miss-
ing data generally lead to incorrect inferences about
topology when informative data are analyzed with ap-
propriate methods. We conduct new simulations under
more realistic conditions, and these results show no ev-
idence that missing data generally lead to inaccurate
Bayesian estimates of phylogeny. In fact, we show that
the practice of excluding characters simply because they
contain missing data cells may itself reduce accuracy. We
reanalyze the “manipulated” empirical example from
LEA and find that, without these artificial “manipula-
tions” of the data, their conclusions are not supported.
We also analyze eight empirical data sets, each contain-
ing many taxa with extensive missing data. We show
that these incomplete taxa are consistently placed into
the expected higher taxa, often with very strong sup-
port. Overall, our results confirm previous simulation
and empirical studies showing that taxa with extensive
missing data can be accurately placed in phylogenetic
analyses and that adding characters with missing data
can be beneficial (at least under some conditions). We
conclude by pointing out important areas for future re-
search on the topic of missing data and phylogenetic
analysis.

A GENERAL FRAMEWORK FOR INTERPRETING
SIMULATION AND EMPIRICAL RESULTS

There are two main ways that missing data might
be added to a phylogenetic analysis, either through the
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addition of incomplete characters or incomplete taxa.
For example, imagine having data from two genes for
a given genus of organisms, in which the first gene has
been sequenced for all 10 species and the second gene
has been sequenced for only 5 species. Given this situ-
ation, one might (a) analyze only the first gene for all
10 species and then decide whether or not to (b) add
the second gene (adding incomplete characters that are
missing data for 5 of the species). Or, one might (c) ana-
lyze only the 5 species having data for both genes, and
then decide whether or not to (d) add the 5 species lack-
ing data for the second gene (adding incomplete taxa
that are lacking data for the first gene). Note that (b)
and (d) are effectively identical. Most of the literature
on missing data has focused on whether to include taxa
lacking data for some characters (c versus d). LEA did
not actually address this question, but they imply that
their results overturn earlier studies that did (e.g., p.
141). Below, we briefly review previous studies on in-
complete taxa (treating fossil studies collectively rather
than individually), and address incomplete characters
(a vs. b) in our simulations and under “Areas for Future
Research.”

Rather than being in conflict, we argue that most of
the diverse empirical and simulation studies on missing
data are largely consistent when viewed in light of the
hypothesis that highly incomplete taxa can potentially
be accurately placed if enough informative characters
are sampled overall (Wiens 2003b). Thus, the apparent
impacts of extensive missing data in these studies fall
along a continuum (from negative to inconsequential)
based on the overall number of characters in the analysis.

The issue of missing data first became prominent in
association with parsimony analyses of morphological
data for fossil taxa (e.g., Donoghue et al. 1989; Platnick
et al. 1991). These studies have found incomplete taxa
to be problematic in some cases (e.g., generating many
equally parsimonious trees and poorly resolved con-
sensus trees; Novacek 1992; Wilkinson 1995; Anderson
2001) but not others (e.g., Kearney 2002; Cobbett et al.
2007). However, these studies included relatively few
characters (up to a few hundred, but often <100). The
simulations of Huelsenbeck (1991) included only 100
characters and found highly incomplete taxa (75% miss-
ing data) were often problematic. Wiens and Reeder
(1995) found that including highly incomplete taxa
(75%) reduced accuracy somewhat in parsimony anal-
yses of known viral phylogenies, but their two data
sets (sequence and restriction site) each included less
than 100 parsimony informative characters. Dragoo and
Honeycutt (1997) showed that their parsimony analy-
ses were largely insensitive to missing data with ∼1500
characters (three mitochondrial genes for carnivoran
mammals), with no effect on topology when one or
two of the three genes were replaced with missing data
cells, but that some resolution was lost when some
taxa had ∼87% missing data. The simulations of Wiens
(2003b; see also 2003a) showed that highly incomplete
taxa (e.g., 90% missing data) can be accurately placed
given enough characters in parsimony, likelihood, and

neighbor-joining analyses, but the exact level of char-
acter sampling needed depends on the phylogenetic
method, distribution of missing data among characters,
and branch lengths (e.g., accurate placement is more
difficult with neighbor joining and parsimony, when
missing data are randomly distributed among taxa, and
when overall branch lengths are long and/or characters
evolve rapidly).

Dunn et al. (2003) performed a limited set of simu-
lations based on their data for 2293 rapidly evolving
mitochondrial DNA characters for mylobatiform fish
and found that the impact of incomplete taxa varied
depending on the method, from negative (parsimony)
to none (likelihood), relative to simulations in which
all taxa were complete. Philippe et al. (2004) included
30,399 characters from 129 protein sequences among
eukaryotes and found that highly incomplete taxa were
placed with strong support in their empirical likelihood
analyses (i.e., the four most incomplete taxa had 56%,
60%, 61%, and 76% missing data, and the likelihood
bootstrap values placing them with their sister taxa
are respectively 100%, 92%, 98%, and 95%). They also
found high accuracy in their simulations based on those
data (e.g., 100% accuracy for all nodes when 50% of the
data were missing, and 89% mean accuracy across nodes
when 90% were missing). Driskell et al. (2004) examined
DNA data sets with very large numbers of characters
(469,497 for metazoans and 96,698 for green plants) and
extensive missing data (92% and 84%, respectively) and
found that highly incomplete taxa were placed in clades
expected from previous taxonomy with strong support
based on parsimony bootstrapping. Wiens et al. (2005)
included 3519 (mostly DNA) characters for treefrogs
and showed that highly incomplete taxa were placed in
the expected clades with very strong support by parsi-
mony and Bayesian analyses (e.g., 10 species with >90%
missing data each were all placed in the expected clades,
with monophyly of these clades each supported with a
Bayesian posterior probability (Pp) of 1.00). Other recent
empirical studies (described below) have also shown
that highly incomplete taxa are placed in the expected
clades with strong support, and most of these studies in-
cluded >4000 characters each (e.g., Lynch and Wagner
2010; Thomson and Shaffer 2010; Wiens, Kuczynski,
Townsend, et al. 2010).

Wiens (2005) used simulations to show that adding
highly incomplete taxa (i.e., 90% missing data) could
be as effective as complete taxa in rescuing likelihood
and Bayesian analyses from long-branch attraction,
even when the models utilized in these analyses were
misspecified (i.e., among-site rate heterogeneity and
transition–transversion bias were simulated but not in-
cluded in the estimation models), given a sample of
1000 characters. The simulations of amino acid data by
Hartmann and Vision (2008) showed reduced accuracy
with extensive missing data for parsimony, likelihood,
and neighbor-joining analyses, but only included 500
characters. Wiens and Moen (2008; their fig. 2) used
simulations to show that highly incomplete taxa could
be accurately placed in Bayesian analyses given enough
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characters (e.g., 2000), even when rate heterogeneity
and substitution bias were simulated but not included
in the Bayesian model.

In summary, all of these simulation and empirical
studies seem to fit into this common framework, with
highly incomplete taxa being potentially problematic
when the overall number of characters is small and gen-
erally unproblematic when the number is large. This
common framework seems to apply to all phylogenetic
methods, not simply likelihood and Bayesian analysis.

The results of many of these studies contradict the
conclusions of LEA but were not mentioned by them,
including the ones that addressed the impact of missing
data on likelihood and Bayesian analyses (e.g., the re-
sults of Philippe et al. 2004; Wiens 2005; Wiens et al. 2005
were not mentioned, and the latter two studies were not
cited). For example, LEA conclude that “in both ML
and Bayesian frameworks, among-site rate variation
can interact with ambiguous data to produce mislead-
ing estimates of topology” (p. 130) and that estimation
becomes problematic “when rate variation across sites
is not properly modeled” (p. 141). But the simulation
studies by Wiens (2005) and Wiens and Moen (2008)
showed accurate estimation of topologies with incom-
plete taxa by Bayesian and likelihood methods when
rate variation was simulated but completely ignored.

PROBLEMATIC SIMULATIONS AND CONCLUSIONS OF
LEMMON ET AL. (2009)

LEA analyzed a very limited set of simulated condi-
tions and found results that were seemingly discordant
with those of other simulation studies of the same topic.
Yet, they make sweeping conclusions from their results
(e.g., that their results have implications for “all analy-
ses that rely on accurate estimates of topology or branch
lengths”, p. 130). They also imply that their results over-
turn those of previous studies. It is therefore important
to look at what they did and found more closely.

LEA examined the four-taxon case, with the sim-
plest model of sequence evolution (Jukes–Cantor), and
equal branch lengths (given that an unrooted tree is es-
timated). For each set of conditions, they simulated two
data sets (Gene A and Gene B), one with complete data
for all taxa and characters, and another lacking data
for all characters for two taxa. These genes were simu-
lated under either the same or different rates of change.
They then evaluated Bayesian Pp for the single internal
node for Gene A alone and for Gene A and B combined.
For maximum likelihood, they evaluated the frequency
with which this clade was correctly reconstructed. They
assumed that the combined data would give the same
results as Gene A alone because data were only present
in two of the four taxa for Gene B (making Gene B unin-
formative under the parsimony criterion, but note that
this is not necessarily true for likelihood or Bayesian
analysis, see below).

They found that Bayesian Pp for the combined data
sometimes differed from the observed values based on
Gene A alone (but for maximum likelihood a compa-

rable result only occurred when branch lengths were
arbitrarily fixed to nonzero values). They refer to these
differences as “bias.” In some cases, these biases appear
to be problematic, as when Pp approaches zero for the
true tree (such that the true phylogeny is not estimated).
Similarly, they found some cases where Pp was very
high for the true tree, even though both data sets were
effectively invariable. They suggested that these biases
were related to the Bayesian star-tree paradox (e.g.,
Lewis et al. 2005), the tendency for Bayesian analysis to
strongly favor one tree when there is little information
with which to choose among trees (regardless of miss-
ing data). However, they found virtually none of these
extreme biases unless the characters were effectively
invariant or “saturated” (i.e., used by LEA as meaning
so variable so as to be effectively uninformative), and
unless rate heterogeneity between genes was simulated
and then ignored by failing to partition by genes. The
only exception we find is in their fig. 4, for one set of
conditions with very high rates in both genes and data
missing in sister taxa. Thus, their results do not sup-
port their sweeping generalizations about the negative
impact of missing data, especially for conditions likely
to be encountered by most empirical systematists. This
presumably explains why so many previous simulation
and empirical studies contradict their conclusions about
the negative impact of missing data on Bayesian and
likelihood analyses (see above).

In some cases, they show that combined data Pp dif-
fer moderately from those for Gene A alone (e.g., their
fig. 4, when rate of Gene A is low). However, arguing
that these Pp are “biased” assumes that Gene B has no
influence on topology estimation whatsoever (i.e., Pp
for the combined analysis should be the same as for
Gene A alone). Although this is true for parsimony, it is
not necessarily true for Bayesian or likelihood analyses.
For example, if Gene B has no influence on Bayesian es-
timates of topology (which are based on Pp), then how
can it influence Pp at all? Clearly, the initial assumption
that incomplete characters in Gene B have no impact
cannot be fully correct. Furthermore, finding that com-
bined data Pp differ from Pp for Gene A is not direct
evidence that combined data Pp yield biased estimates
of accuracy (i.e., in this context, the probability that the
clade is correctly reconstructed by the method under
a given set of conditions). Demonstrating bias would
require directly examining the relationship between
accuracy (the probability that the clade is correctly re-
constructed by Bayesian analysis of Genes A and B
combined) and the combined-data Pp for these condi-
tions (for studies examining the relationship between
Bayesian Pp and accuracy see, e.g., Wilcox et al. 2002;
Alfaro et al. 2003; Huelsenbeck and Rannala 2004). LEA
did not directly examine the relationship between ac-
curacy and Pp when missing data are added, and so
for these nonextreme conditions, their statements about
“bias” caused by missing data are not actually based on
any direct evidence.

In summary, the results of LEA suggest that miss-
ing data are primarily problematic when utilizing

 by guest on A
pril 24, 2011

sysbio.oxfordjournals.org
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


4 SYSTEMATIC BIOLOGY VOL. 60

uninformative characters and/or when failing to par-
tition clearly heterogeneous data sets, conditions that
may not be routinely encountered by most systema-
tists. This is not to say that we think that data sets with
missing data always yield accurate phylogenies with
unbiased support values, but rather that the simulation
results of LEA can have a very different interpretation
from their sweeping negative conclusions, if one simply
considers which of their results are relevant to what
phylogeneticists actually do.

Another critical issue is the addition of sets of charac-
ters with data for only two species, which are expected
to have little impact on the analysis (and which pre-
sumably would not be used by empirical systematists).
It is unclear if their results are specific to adding only
two species or if they also apply to larger numbers of
species. We have therefore performed new simulations
to address the relevance of the results of LEA to larger
numbers of taxa.

NEW SIMULATIONS

Methods

We addressed how adding data from a gene with
incomplete taxon sampling to the one with complete
taxon sampling influences the accuracy of Bayesian
phylogenetics. Simulation methods generally followed
Wiens and Moen (2008). We simulated 16-taxon phy-
logenies that were either fully asymmetric or symmet-
ric. Following LEA, we simulated DNA data with the
Jukes–Cantor model with equal branch lengths across
the tree. We generally used 500 characters per gene, but
also simulated 100. Data set 1 had all characters for all
16 taxa. For Data set 2, we simulated the complete data,
and then a set of taxa was randomly selected in each
replicate to have all their characters replaced with miss-
ing data cells. In one set of simulations, eight taxa were
incomplete in Data set 2 (one way of generalizing the
design of LEA to larger numbers of taxa). In another set
of simulations, 14 taxa were incomplete, leaving only
2 taxa in Data set 2 with nonmissing data (an alternate
way of generalizing the design of LEA to more taxa).
Data were simulated under a broad range of rates of
change in each data set, from very low (probability of
change in a given character along a given branch of
0.0001) to relatively high (0.50), and six intermediate
rates (0.001, 0.01, 0.10, 0.20, 0.30, 0.40). Initial analyses
on the asymmetric tree showed that the most extreme
rates gave relatively low accuracy for these conditions
(30% of tree or less resolved correctly). We simulated
both equal rates in each data set and many unequal
rates (Fig. 1), but not every possible combination of
rates. We analyzed 100 replicates for each set of condi-
tions. We analyzed Data set 1 alone and then analyzed
data sets 1 and 2 combined. Data sets were analyzed
using MrBayes v3.1.2 (Huelsenbeck and Ronquist 2001),
assuming a Jukes–Cantor model with a parameter for
unequal rates of change among sites (gamma), and other
options set to default values. Importantly, combined

analyses were partitioned, allowing a different value for
gamma in each data set. Analyses were run for 50,000
generations each, sampling every 100 generations, and
excluding the first 10,000 generations as burn-in. These
settings provide adequate tree searches for these con-
ditions (Wiens and Moen 2008). We evaluated accuracy
for each replicate as the proportion of resolved nodes in
the majority-rule Bayesian tree that are shared with the
known, true topology, and overall accuracy (for a given
set of conditions) is based on the mean for 100 replicates.
This measure of accuracy is used in many previous sim-
ulation studies (e.g., Wiens 2003b; Wiens and Moen
2008); other measures are certainly possible, but they
should also reflect the similarity between the true and
estimated trees averaged across replicates. We did not
directly evaluate Pp support for individual clades, but
a clade will not be resolved unless its Pp is >0.50, and
LEA did not directly examine the relationship between
accuracy and Pp either.

Results

We find that across a broad range of conditions
(Fig. 1), adding the data set consisting of 50% miss-
ing data (8 of 16 taxa incomplete) either increases or
has no effect on accuracy, relative to analyzing the com-
plete data set alone. Although the increases are typically
small, under some conditions, the relative increase can
be >20% (e.g., 0.49 vs. 60). These increases in accuracy
may occur when the rates of change in the two data sets
are equal, or when they are very unequal as well. When
the added data set has only two complete taxa (as in the
simulations of LEA), accuracy may be slightly higher or
slightly lower than Data set 1 alone, and is consistently
within 0.05. These latter results suggest that adding sets
of characters with only two species has little influence
on the overall accuracy of analyses with larger num-
bers of taxa, and that the design and results of LEA do
not generalize to more realistic conditions.

Discussion

Contrary to the conclusions of LEA, we find no ev-
idence that adding sets of characters with extensive
missing data leads to misleading estimates of Bayesian
phylogeny or support values (i.e., only clades with Pp
> 0.50 are supported). Importantly, our results suggest
that under some conditions, failing to add characters
with missing data can lead to reduced phylogenetic
accuracy. Thus, being overly cautious about excluding
characters simply because they have missing data can
lead to reduced phylogenetic accuracy. This is a critical
point that LEA do not discuss.

Our simulation methods are not identical to those of
LEA. For example, we assume that researchers will not
choose to analyze data sets that completely lack phylo-
genetic information due to rates that are too fast or slow
(and so we do not simulate these conditions, but we
do simulate branches that are both extremely long and
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2011 POINT OF VIEW 5

FIGURE 1. Results of simulations showing the impact of adding sets of characters with missing data on the accuracy of Bayesian phylogenetic
analysis. Within each square, the top number is accuracy for Data set 1 alone, whereas the bottom number is for combined analysis of Data sets
1 and 2. Results on the left are for simulations in which Data set 2 has eight complete taxa and the right shows results in which Data set 2 has
only two complete taxa.

extremely short). We also assume that most researchers
will partition data sets evolving at different rates. But
most importantly, our results suggest that the mislead-
ing Bayesian estimates noted by LEA do not necessarily
occur under slightly more realistic conditions (e.g., more
taxa, partitioned data, and use of variable characters).
As one example, LEA suggest that Bayesian Pp may
be strongly influenced by whether the taxa with non-
missing data are sister or nonsister taxa, but this simple

division becomes unclear when additional taxa are in-
cluded. For example, given a five-taxon tree (A, B) (C
(D, E), with missing data in species C and D, nonmiss-
ing data are simultaneously present in both sister taxa
(A, B) and nonsister taxa (A, E).

These simulations are also very limited and still very
far from realistic. Many parameters that could have been
varied were not (e.g., more complex substitution mod-
els, variation in rates within genes), in order to make the
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results more comparable with those of LEA (see instead
Wiens 2005; Wiens and Moen 2008). Perhaps the most
important oversimplification is the use of equal branch
lengths throughout the tree. In order to address how
missing data influence Bayesian and likelihood analyses
under fully realistic conditions, we also perform analy-
ses of eight empirical data sets. Before we do that, we
briefly address the empirical example offered by LEA.

Reexamining the Manipulated Empirical Example of LEA

LEA analyzed an empirical data set but again made
many methodological choices that make these data very
different from those analyzed by empirical systematists.
They analyzed data from a single mitochondrial gene
from eight species of plethodontid salamanders (but
for which entire mitochondrial genomes were available;
Mueller et al. 2004), deliberately analyzing a very small
number of characters. We could not find an explanation
for why these particular characters and taxa were cho-
sen. They then added a second data set consisting of
missing data for six of the eight species and “manipu-
lated empirical data” for the other two. These added,
nonmissing data consist of resampled sites from the
same gene for the same species, selected to be either
all invariant or all variable between the two species.
Although they found that adding this second set of
characters influenced Bayesian and likelihood estimates
of topology, support, and branch lengths, this analysis
raises many questions about its design. Why not use ac-
tual data (e.g., another gene) instead of resampling sites
from the same gene? Why only variable and invariant
sites? To what extent are their results an artifact of these
methodological choices?

We addressed this latter question using very similar
empirical data, and our results offer a dramatic con-
trast to those of LEA (Fig. 2). We downloaded the same
16S data, but instead of adding only invariant or vari-
ant sets of characters from the same gene, we added
unmanipulated data from another gene (the widely
used cytochrome b; again from Mueller et al. 2004) to
the same species to which LEA added data. Clearly,
adding another gene is more relevant to what empir-
ical systematists actually do. Instead of finding that
“ambiguous characters can strongly bias estimates of
topological support and branch lengths” (p. 139) we
find that Bayesian and likelihood estimates of topology,
support, and branch lengths are almost identical after
adding cytochrome b with data missing in six species
(see Fig. 2 legend for methods). As in their simulations,
it appears that the results of LEA reflect artifacts of
adding invariant and saturated characters (and failing
to partition data sets), and therefore may have limited
relevance to most empirical studies.

Apart from their example involving “manipulated”
empirical data, LEA do not show any empirical stud-
ies in which missing data seem to be problematic for
Bayesian or likelihood methods. Note that on p. 142,
LEA state “One of us (K.S.-H.) has come across such an
example of discordance among gene trees in empirical

data from North American fireflies. Once ambiguous
sites were excluded from the analysis, gene tree congru-
ence increased substantially (Stanger-Hall et al. 2007).”
However, the only references to missing data in that
paper were the following quotes: “However, due to
stretches of missing data in individual taxa (due to dif-
ferences in primer binding and sequencing success) and
the possibility that these unduly influence the phylo-
genetic analysis (Lemmon et al. unpublished data), the
final alignment was reduced to 1906 bp.” (p. 36) and
also (p. 42) “it seems to have a significant effect on the
outcome of a ML and/or Bayesian analysis (Lemmon
et al., unpublished data). This led us to exclude DNA
segments with missing data for more than one taxon
from our final alignment.” Thus, the Stanger-Hall et al.
(2007) paper does not contain the empirical results that
LEA state that it does, only references to LEA.

NEW RESULTS FROM EMPIRICAL DATA SETS

The problem of missing data is something that empiri-
cal phylogeneticists may encounter every day. LEA state
that the supposed negative impacts of missing data on
phylogenetic analysis are relevant to “all studies” that
estimate and use phylogenies (p. 130). If this were true,
we would expect to see widespread negative impacts
in empirical analyses that include extensive missing
data. We have previously described empirical studies
that showed evidence that such impacts can be small or
nonexistent (e.g., Philippe et al. 2004; Wiens et al. 2005),
specifically for likelihood and Bayesian analyses. Here
we present analyses of eight additional empirical data
sets that show similar patterns.

Obviously, the true phylogeny is unknown in most
empirical data sets. However, one can make predictions
about how methods will perform with real data given
the results of simulations. It is not immediately clear
what specific empirical predictions can be derived from
the simulations of LEA. Nevertheless, they state that ex-
tensive missing data may “positively mislead” (p. 143)
estimated topologies in likelihood and Bayesian anal-
yses. If this were the case, then we predict that highly
incomplete taxa will be placed in clades that appear to
be incorrect based on previous taxonomy and system-
atic research (i.e., assessing accuracy based on congru-
ence). In contrast, if the hypothesis of Wiens (2003b) is
correct, and if sufficient characters have been sampled,
then we expect that incomplete taxa will be placed in the
expected higher taxa (e.g., genera, families), and with
strong support. In addition, there should be strong sup-
port for the localized placement of these species within
these higher level taxa (if sufficient characters were sam-
pled). Following Wiens et al. (2005), we test for a neg-
ative relationship between localized clade support and
incompleteness of individual taxa.

Methods

We selected eight published empirical data sets
(Table 1), all involving Bayesian or likelihood analyses
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FIGURE 2. Analyses of mitochondrial DNA sequence data in plethodontid salamanders show that adding sets of characters with extensive
missing data may have negligible impacts on topology, support, and branch lengths (contrast with fig. 7 of LEA). We obtained the same 16S data
for the same species as LEA (aligned using MUSCLE; Edgar 2004), but instead of adding resampled invariant and variable sets of characters
from 16S, we added data from another gene (cytochrome b; cyt b). Data are added for the same pairs of sister and nonsister species (boldfaced)
used by LEA; all other species have missing data cells for cyt b. Bayesian analyses used MrBayes v3.1.2 (Huelsenbeck and Ronquist 2001)
with the GTR + I + Γ model and 1,000,000 generations. Likelihood analyses used RAxML version 7.2 (Stamatakis 2006) with the recommended
GTR + Γ model, with 100 integrated bootstrapping and heuristic search replicates. Both analyses were partitioned by gene. Numbers adjacent to
branches indicate posterior probabilities (Bayesian) or bootstrap values (likelihood). Trees are unrooted (but see Kozak et al. 2009 for justification
for rooting near Ensatina and Hydromantes).

of mostly nonoverlapping vertebrate clades. All eight
have at least one species with >70% missing data, and
four data sets have at least one species with >90%
missing data. Given that all eight studies are from our
laboratory, we know that taxa were not simply excluded
because of incompleteness, or because of how incom-
pleteness influenced the results (this is less clear for
other studies). All eight studies include multiple genes,
and six of eight include both nuclear and mitochondrial
genes. Thus, there is considerable rate heterogeneity
among genes and other data partitions.

For each data set, we quantified the percentage of
missing data cells in each species. Most missing data
originate from the complete absence of data from one
or more genes (or parts of genes) in combined analyses,
but a small fraction also comes from gaps in alignments.
Levels of branch support were based on whichever
model-based method was used in the original study
(i.e., Bayesian vs. likelihood); we arbitrarily selected
likelihood for Hua et al. (2009), which used both. For
the ranid and phrynosomatid data sets, we used 49%

as the lowest bootstrap, as specific values <50% were
unavailable; however, relatively few nodes had values
<50% (14.6% for ranids, 7.3% for phrynosomatids) and
using reasonable alternate values (e.g., 25%) gave iden-
tical correlation results. Detailed methods are described
in the original studies. However, given that effects of
missing data may depend on how a software package
treats these cells, we note that maximum likelihood
analyses used RAxML (Stamatakis 2006) and Bayesian
analyses used MrBayes (Huelsenbeck and Ronquist
2001).

We first evaluated whether highly incomplete taxa are
placed in the clades expected based on previous taxon-
omy, and whether they are placed in these clades with
strong support. If highly incomplete taxa are generally
problematic, then they should not be consistently placed
in the clades predicted by previous taxonomy, or if they
are, the support for these clades should be weak. For
each data set, we identified a set of nonnested clades
from previous taxonomy. These mostly consisted of
genera, as the generic-level assignment of most of these
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species was previously established based on nonmolec-
ular data. However, for higher-level snake phylogeny,
with only one species per sampled genus, we used fam-
ilies (and well-established subfamilies for Colubridae).
For ranids, we used subfamilies, given that the taxon-
omy for these clades is relatively stable (e.g., Bossuyt
et al. 2006; Frost et al. 2006) whereas generic-level tax-
onomy is not (e.g., Frost et al. 2006 vs. Wiens et al. 2009).
We then tallied the support for each clade (likelihood
bootstrap or Bayesian Pp) and the species with the max-
imum amount of missing data in that clade (i.e., the
taxon that should be most difficult to accurately place).
We acknowledge the possibility that these higher taxa
may be associated with longer branches than a random
sampling of internal branches within the tree, but this
potential source of bias should not overturn our results
or conclusions.

Following Wiens et al. (2005), we then quantified the
level of branch support for the specific placement of
each individual species based on either 1) the support
for the node placing them with their sister species (for
species that are sister to a single species), or 2) the aver-
age of the support for the clade uniting them with their
sister group, and the support for the clade excluding the
species from that sister group (for species that are sister
to >1 species). Given the level of incompleteness and
branch support for each species, we then examined the
relationship between these variables using nonparamet-
ric Spearman’s rank correlation analysis, implemented
in Statview.

Note that a negative relationship between support
and completeness is not inconsistent with the mecha-
nism proposed by Wiens (2003b). If there are too little
data to accurately place a taxon on the tree, then the
support for its placement should be weak. However,
the simulations of Wiens (2003b) suggest that, given
enough characters, even highly incomplete taxa will
be accurately placed in the phylogeny with high consis-
tency. This should be reflected with high support values.
Finally, we note that this analysis does not necessarily
address whether support values are biased by missing
data, unless they are strongly biased to be consistently
positive or negative (but LEA do not address moder-
ate biases either because they did not directly test how
accuracy and support values are related).

Results

The eight data sets collectively include >1000 species
and >60 higher taxa, and almost all of these species
are placed in the expected higher taxa, despite many
having extensive missing data (Tables 1 and 2). Further-
more, the monophyly of most of these clades is strongly
supported (Bayesian Pp = 1.00; likelihood bootstrap =
78%–100%, but most >90%). In the three cases in which
genera are not monophyletic in these data sets, there are
other factors besides missing data that are involved. In
bolitoglossine salamanders, Pseudoeurycea and Lineotri-
ton both appear to be nonmonophyletic (Wiens, Parra-

Olea, et al. 2007), but previous phylogenetic studies with
little missing data suggest that this reflects parallel evo-
lution and misleading taxonomy (Parra-Olea and Wake
2001). The nonmonophyly of Trachemys seems to reflect
conflict between mitochondrial and nuclear genes, not
missing data per se (Wiens, Kuczynski, Arif, et al. 2010).
In summary, if missing data are generally problematic
as LEA suggest, there does not seem to be any evidence
for it in these eight data sets (unless the previous non-
molecular taxonomies in these groups have been misled
in a way that is consistent with the misleading effects
of missing data on likelihood and Bayesian analyses of
DNA sequence data).

Only two of the eight studies show significant nega-
tive relationships between branch support and incom-
pleteness (Fig. 3). These results suggest that missing
data have little consistent negative impact on levels
of branch support, and there is sometimes strong sup-
port for the localized phylogenetic placement of taxa
with >90% missing data (Fig. 3), within these expected
higher taxa. Interestingly, the two data sets with signif-
icant relationships between support and completeness
(plethodontids, ranids) have the largest numbers of taxa
but only modest numbers of characters (Table 1). Again,
we note that when too few informative characters have
been sampled in a taxon, we expect only weak support
for its placement in the tree.

Other Studies

In addition to these eight studies and others men-
tioned previously (e.g., Driskell et al. 2004; Philippe
et al. 2004; Wiens et al. 2005), other recent studies have
also shown similar patterns (e.g., Lynch and Wagner
2010; Thomson and Shaffer 2010; Wiens, Kuczynski,
Townsend, et al. 2010; Pyron et al. 2011). For example,
Lynch and Wagner (2010) examined boid snake rela-
tionships with a Bayesian analysis of 14,417 molecular
characters, with some taxa 98% incomplete and each
taxon having an average of 70% missing data. Yet, their
phylogeny is generally strongly supported and congru-
ent with previous hypotheses and taxonomy (e.g., of
six genera with >1 species, five are strongly supported
as monophyletic with Pp > 0.98). Wiens, Kuczynski,
Townsend, et al. (2010) showed that addition of >15,000
molecular characters to a data set of 363 morphologi-
cal characters for squamate reptiles did not change the
placement of most fossil taxa in a combined Bayesian
analysis (despite the fossils having >98% missing data
in this analysis) and caused no significant change in
Bayesian Pp for fossil taxa. Furthermore, the placement
of fossil taxa was consistent with previous taxonomy
(e.g., fossil snakes placed in snakes), both before and
after addition of molecular data.

AREAS FOR FUTURE RESEARCH

There are now many studies showing concordant
support for the idea that highly incomplete taxa can be
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TABLE 1. Basic information on the eight data sets used in analyses of incomplete taxa and clade support

Clade Character data Number characters Number taxa
Plethodontid salamanders 3 mitochondrial, 3 nuclear genes 5590 182
Bolitoglossine salmanders 2 mitochondrial genes 1823 157
Treefrogs (Hyla) 4 mitochondrial, 6 nuclear genes 7083 35
Hemiphractid frogs 2 mitochondrial, 2 nuclear genes 4370 53
Ranid frogs 1 mitochondrial, 3 nuclear genes 5307 389
Emydid turtles 2 mitochondrial, 6 nuclear genes 5264 38
Phrynosomatid lizards 5 mitochondrial, 6 nuclear genes 8582 122
Snakes 20 nuclear genes 13,332 50

Phylogenetic Range missing Mean missing
Clade method data (%) per species data (%) per species References
Plethodontid salamanders ML 1.6–93.5 43.9 Kozak et al. (2009)
Bolitoglossine salmanders BA 1.6–75.9 36.4 Wiens, Parra-Olea, et al. (2007)
Treefrogs (Hyla) ML 4–96 39.7 Hua et al. (2009)
Hemiphractid frogs BA 1.2–77.4 19.9 Wiens, Kuczynski, Duellman, et al. (2007b)
Ranid frogs ML 1.1–90.8 52.5 Wiens et al. (2009)
Emydid turtles BA 2.7–72.6 20.3 Wiens, Kuczynski, et al. (2010)
Phrynosomatid lizards ML 1.6–92.3 56.2 Wiens, Kuczynski, Arif, et al. (2010)
Snakes ML 2.5–72.4 17.5 Wiens et al. (2008)

Notes: BA = Bayesian analysis; ML = maximum likelihood.

accurately placed in model-based analyses, and sweep-
ing statements about the negative impacts of missing
data are not substantiated. Nevertheless, many other
aspects of the potential impact of missing data on phy-
logenetic analysis are still in need of further research.

Adding Characters with Missing Data

In addition to the effects of incomplete taxa, another
major question is: given a complete set of characters for
a set of taxa, is it useful to add a second set of characters
that are incomplete (because they include data for only
some of the taxa)? In other words, when do the ben-
efits of adding more characters outweigh the potential
disadvantages of increasing missing data in the matrix?
Superficially, it might seem that the simulations of LEA
addressed this question. However, their results may be
of limited relevance to empirical studies because only
two species were added. Our simulations here (Fig. 1)
suggest that adding a set of characters with data for 50%
of the species is generally either beneficial or harmless
for Bayesian analysis. However, these simulations were
not comprehensive either, and additional analyses are
needed (e.g., exploring unequal branch lengths, differ-
ent numbers of characters, and different levels of taxon
sampling).

Other simulation and empirical studies have also
found results suggesting that incomplete characters can
be beneficial, but with some caveats. Wiens (1998) found
that adding sets of incomplete characters can poten-
tially increase accuracy for parsimony, but that accuracy
was increased more by distributing the same amount
of added data among fewer taxa and more characters
(and with less missing data). He also found potential
problems of long-branch attraction when a set of highly
incomplete characters is added.

Wiens et al. (2005) showed that adding a set of slow-
evolving characters (nuclear genes) available for only

some taxa (and with much missing data) seemed to im-
prove results relative to those from analyzing only fast-
evolving characters (mitochondrial genes) for a larger
number of taxa. Specifically, some taxa are apparently
misplaced in the analysis of fast-evolving characters
alone (based on previous taxonomy), but not in the
combined analysis.

The simulations of Gouveia-Oliveira et al. (2007)
showed that accuracy of likelihood analyses was much
higher when sequences with gaps (i.e., missing data) are
included rather than excluded. Similarly, Wiens (2009)
used simulations to address whether adding molecular
data improves phylogenetic accuracy for fossil taxa, in
a combined analysis of molecular and morphological
data, with parsimony and Bayesian analysis (where the
molecular data are missing in the fossil taxa). These sim-
ulations showed that under many conditions, adding
molecular data improved accuracy for fossil taxa. A
review of empirical studies (Wiens 2009) showed that
adding molecular data can improve resolution (i.e., re-
solve polytomies in consensus trees) for the placement
of fossil taxa, at least in some parsimony analyses (e.g.
Manos et al. 2007). An analysis of squamate reptiles
(Wiens, Kuczynski, Townsend, et al. 2010) confirmed
that molecular data can change the placement of some
fossil taxa, in addition to increasing resolution.

Estimating Divergence Times

It would also be worthwhile to investigate the effects
of missing data on estimation of divergence times. LEA
state that their results on branch length estimation are
relevant to this issue, but they acknowledge that their
results may be an artifact of not including rate hetero-
geneity in the likelihood model (p. 139), and this latter
hypothesis is supported by our analyses also (Fig. 2).
Furthermore, their study contains no actual estima-
tion of divergence dates. We have conducted several
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TABLE 2. Summary of support for previously recognized higher taxa (genera, families, subfamilies) within the eight data sets, showing that
almost all higher taxa are strongly supported as monophyletic, despite many of them containing one or more taxa with extensive missing data

Clade Higher taxon Method Support Maximum incompleteness (%)
Plethodontid salamanders Batrachoseps ML 84 93.5

Gyrinophilus ML 100 49.2
Pseudotriton ML 78 47.1

Eurycea ML 100 80.5
Plethodon ML 100 80.2

Hydromantes ML 100 55.0
Ensatina ML 100 50.3
Aneides ML 100 41.6

Desmognathus ML 100 80.4

Bolitoglossine salamanders Cryptotriton BA 1.00 75.6
Dendrotriton BA 1.00 46.4

Nototriton BA 1.00 75.6
Oedipina BA 1.00 48.7
Thorius BA 1.00 4.7

Chiropterotriton BA 1.00 71.9
Pseudoeurycea BA Not supported 75.9

Ixalotriton (nested inside Pseudoeurycea) BA 1.00 49.7
Lineotriton (nested inside Pseudoeurycea) BA Not supported 4.8

Bolitoglossa BA 1.00 70.8

Treefrogs (Hyla) Tlalocohyla ML 100 52
Isthmohyla ML 100 56

Smilisca ML 100 22
Hyla ML 79 96

Hemiphractid frogs Flectonotus BA 1.00 14.8
Hemiphractus BA 1.00 68.7

Stefania BA 1.00 56.9
Gastrotheca BA 1.00 77.4

Ranid frogs Ptychadeninae ML 96 90.8
Phrynobatrachinae ML 94 54.0

Conrauinae ML 100 44.8
Petropetidinae ML 100 54.2
Pyxicephalinae ML 86 89.6

Micrixalinae ML 100 55.2
Dicroglossinae ML 96 89.8

Ranixalinae ML 88 87.1
Ceratobatrachinae ML 100 46.9
Nyctibatrachinae ML 85 26.7

Mantellinae ML 99 52.2
Rhacophorinae ML 94 90.3

Raninae ML 88 90.7

Emydid turtles Glyptemys BA 1.00 22.3
Terrapene BA 1.00 42.6

Pseudemys BA 1.00 33.1
Trachemys BA Not supported 72.6

Malaclemys BA 1.00 15.2
Graptemys BA 1.00 57.6

Phrynosomatid lizards Holbrookia ML 100 77.6
Uma ML 100 81.5

Phrynosoma ML 100 92.3
Uta ML 100 53.2

Petrosaurus ML 100 37.1
Urosaurus ML 100 52.6

Sceloporus (including Sator) ML 84 91.9

Snakes Tropidophiidae ML 100 16.9
Pythonidae ML 100 51.4
Uropeltidae ML 100 72.4

Boidae ML 100 47.7
Viperidae ML 100 23.2

Atractaspididae ML 100 68.9
Boodontidae ML 100 12.9

Elapidae ML 100 12.8
Colubridae-Xenodontinae ML 100 31.4

Colubridae-Colubrinae ML 100 15.8
Colubridae-Natricinae ML 100 58.3

Notes: BA = Bayesian analysis; ML = maximum likelihood.
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FIGURE 3. The relationship between the incompleteness of a taxon
(% missing data) and the support for its localized placement in phylo-
genetic analyses using likelihood and Bayesian analysis.

divergence-dating analyses using matrices that contain
extensive missing data (e.g., Wiens, Parra-Olea, et al.
2007; Kozak et al. 2009; Wiens et al. 2009), using both pe-
nalized likelihood and Bayesian approaches (Sanderson
2002; Drummond et al. 2006). Yet, we have found no
evidence to suggest that these estimates are generally
misled by missing data. Instead, these estimates are
generally similar to those for the same groups based
on smaller data sets with fewer missing data cells (e.g.,
Bossuyt et al. 2006 vs. Wiens et al. 2009 for ranid frogs;
Wiens 2007 vs. Kozak et al. 2009 for plethodontid sala-
manders). But again, this is an area in need of further
investigation.

Other Areas

Many other areas remain to be investigated. For ex-
ample, it is unclear how congruence among gene trees

may interact with missing data to impact phylogenetic
accuracy. All simulation studies published so far have
assumed that different genes share the same history, and
have been based on combined analysis of genes (either
implicitly or explicitly). The impact of missing data on
methods that estimate species trees without concatena-
tion (e.g., Edwards et al. 2007) also requires study.

The impact of missing data on support values would
also benefit from additional study. For examples, simu-
lations are needed to address whether the standard in-
terpretation of support values (e.g., likelihood bootstrap
support, Bayesian Pp) remains valid for taxa with exten-
sive missing data.

CONCLUSIONS

LEA state (p. 130) that the results of their study “have
major implications for all analyses that rely on accurate
estimates of topology or branch lengths, including di-
vergence time estimation, ancestral state reconstruction,
tree-dependent comparative methods, rate variation
analysis, phylogenetic hypothesis testing, and phylo-
geographic analysis.” However, examination of their
results shows that their evidence for the negative im-
pacts of missing data hinge largely on methodological
choices that would presumably not be made by most
empirical systematists (e.g., adding data sets consisting
of invariant or “saturated” characters, failing to parti-
tion data sets evolving at dramatically different rates).
Unless those choices are made, their sweeping general-
izations are not supported by their own results. These
generalizations are also contradicted by many previous
simulation and empirical studies, and also by new re-
sults from simulations that incorporate larger numbers
of taxa and data partitioning (Fig. 1), from reanalysis
of their plethodontid salamander example (Fig. 2), and
from eight empirical data sets analyzed here (Fig. 3).
In contrast to the idea of discordance among stud-
ies promoted by LEA, we argue that most results on
missing data can be explained in a common theoretical
framework (Wiens 2003b), and that most studies sug-
gest that it should generally be possible to accurately
place incomplete taxa in phylogenies, if enough infor-
mative characters are sampled. We think that there is a
need for continued investigation of the impact of miss-
ing data on phylogenetics, and we point out specific
topics in particular need of focused research. However,
future studies should strive to reconcile their new re-
sults with those from previous studies in order to make
real progress in this area.
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