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Abstract
1. Phylogenies with extensive taxon sampling have become indispensable for many 

types of ecological and evolutionary studies. Many large-scale trees are based on 
a ‘supermatrix’ approach, which involves amalgamating thousands of published 
sequences for a group. Constructing up-to-date supermatrices can be challenging, 
especially as new sequences may become available almost constantly. Additionally, 
genomic datasets (composed of thousands of loci) are becoming common in phy-
logenetics and phylogeography, and present novel challenges for constructing 
such datasets.

2. Here we present SuperCRUNCH, a Python toolkit for assembling large phyloge-
netic datasets. It can be applied to GenBank sequences, unpublished sequences 
or combinations of GenBank and unpublished data. SuperCRUNCH constructs 
local databases and uses them to conduct rapid searches for user-specified sets 
of taxa and loci. Sequences are parsed into putative loci and passed through rigor-
ous filtering steps. A post-filtering step allows for selection of one sequence per 
taxon (i.e. species-level supermatrix) or retention of all sequences per taxon (i.e. 
population-level dataset). Importantly, SuperCRUNCH can generate ‘vouchered’ 
population-level datasets, in which voucher information is used to generate 
multi-locus phylogeographic datasets. SuperCRUNCH offers many options for 
taxonomy resolution, similarity filtering, sequence selection, alignment and file 
manipulation.

3. We demonstrate the range of features available in SuperCRUNCH by generating a 
variety of phylogenetic datasets. Output datasets include traditional species-level 
supermatrices, large-scale phylogenomic matrices and phylogeographic datasets. 
Finally, we briefly compare the ability of SuperCRUNCH to construct species-
level supermatrices relative to alternative approaches. SuperCRUNCH gener-
ated a large-scale supermatrix (1,400 taxa and 66 loci) from 16 GB of GenBank 
data in ~1.5 hr, and generated population-level datasets (<350 samples, <10 loci) 
in <1 min. It outperformed alternative methods for supermatrix construction in 
terms of taxa, loci and sequences recovered.

4. SuperCRUNCH is a modular bioinformatics toolkit that can be used to assemble 
datasets for any taxonomic group and scale (kingdoms to individuals). It allows 
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1  | INTRODUC TION

Large-scale phylogenies, including hundreds or thousands of spe-
cies, have become essential for many studies in ecology and evolu-
tionary biology. Many of these large-scale phylogenies are based on 
the supermatrix approach (e.g. de Queiroz & Gatesy, 2007), which 
typically involves amalgamating thousands of sequences from public 
databases (e.g. GenBank). Several tools exist for assembling these 
datasets, which differ in their approach and functionality. These 
include programs like PhyLoTA (Sanderson, Boss, Chen, Cranston, 
& Wehe, 2008), PHLAWD (Smith, Beaulieu, & Donoghue, 2009), 
phyloGenerator (Pearse & Purvis, 2013), SUMAC (Freyman, 2015), 
SUPERSMART (Antonelli et al., 2017), PhylotaR (Bennett et al., 2018) 
and PyPHLAWD (Smith & Walker, 2018). These programs have greatly 
improved access to GenBank data, and several have been success-
fully used in a variety of research contexts. However, each program 
comes with its own pros and cons for assembling molecular data-
sets. For example, several programs employ automated (‘all-by-all’)  
clustering of all sequences. This approach enables the discovery 
of orthologous sequence sets, which is useful if target loci are un-
known. However, searching for specific loci is generally incompatible 
with the ‘all-by-all’ clustering approaches. As genomic datasets com-
posed of several thousand loci become increasingly common, the 
ability to specify target loci will be essential for building customized 
phylogenomic datasets. Additionally, many programs use a GenBank 
database release to obtain starting sequences, in which users specify 
a taxon and the relevant sequence data are downloaded automati-
cally. This design is useful and convenient, but it unfortunately pre-
vents the inclusion of locally generated (e.g. unpublished) sequence 
data, thereby limiting analyses to published sequences. A majority of 
methods were designed to create species-level datasets, in which a 
species is represented by one sequence per locus (e.g. a traditional 
supermatrix). It is typically not possible to use these methods to gen-
erate phylogeographic (population-level) datasets, in which a species 
is represented by many individuals sequenced for anywhere from 
one gene to thousands of loci. The dramatic increase in the avail-
ability and size of phylogeographic datasets (Garrick et al., 2015; 
McCormack, Hird, Zellmer, Carstens, & Brumfield, 2013) has created 
a need for methods which can construct large-scale population-level 

datasets. Additionally, no current methods utilize voucher codes (e.g. 
a field series, museum number or other identifier). These codes are 
critical for linking samples and building phylogeographic datasets. 
Thus, producing high-quality phylogenetic datasets can be chal-
lenging using the available methods, and programs with new func-
tionality are required to keep pace with the changing landscape of 
phylogenetics and phylogeography.

To address these challenges, we developed SuperCRUNCH, 
a semi-automated method for creating phylogenetic and phylo-
geographic datasets. SuperCRUNCH can be used to process se-
quences from GenBank, datasets containing only locally generated  
(unpublished) sequences or a combination of sequence types. 
During initial steps, the sequence data are parsed into loci based on 
user-supplied lists of taxa and loci, offering fine-control for targeted 
searches. SuperCRUNCH allows any taxonomy to be used, and of-
fers simple steps for identifying and resolving taxonomic conflicts. 
SuperCRUNCH also includes refined methods for similarity filtering, 
quality filtering and sequence selection. By offering the option to 
select one representative sequence per species or retain all filtered 
sequences, SuperCRUNCH can be used to generate species-level 
datasets (one sequence per species per gene) and population-level 
datasets (multiple sequences per species per gene). SuperCRUNCH 
can also filter sequences using voucher codes, which can label and 
link sequences in phylogeographic datasets (e.g. a ‘vouchered’ data-
set). Analyses are highly scalable and can range in size from small 
population-level datasets (one taxon, one gene) to large phyloge-
nomic datasets (hundreds of taxa, thousands of loci). SuperCRUNCH 
is modular in design, offering flexibility across all major steps in con-
structing phylogenetic datasets, and analyses are transparent and 
highly reproducible. SuperCRUNCH is open-source, heavily docu-
mented and freely available at https://github.com/dport ik/Super  
CRUNCH.

2  | INSTALL ATION

SuperCRUNCH consists of a set of python modules that function as 
stand-alone command-line scripts. As of SuperCRUNCH v1.2, these 
modules can be run using Python 2.7 or 3.7. All modules can be 

rapid construction of supermatrices, greatly simplifying the process of updating 
large phylogenies with new data. It is also designed to produce population-level 
datasets. SuperCRUNCH streamlines the major tasks required to process phyloge-
netic data, including filtering, alignment, trimming and formatting. SuperCRUNCH 
is open-source, documented and available at https://github.com/dport ik/Super 
CRUNCH.

K E Y W O R D S

bioinformatics, GenBank, genomics, multiple sequence alignment, phylogenetics, 
phylogeography, similarity filtering, supermatrix
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downloaded and executed independently without the need to install 
SuperCRUNCH as a python package or library, making them easy to 
use and edit. Nevertheless, there are eight dependencies that should 
be installed that enable the use of all features in SuperCRUNCH. 
These include the biopython package for python, and the following 
seven external dependencies: ncbi-blast+ (for blastn and makeblastdb; 
Altschul, Gish, Miller, Myers, & Lipman, 1990; Camacho et al., 2009), 
cd-hit-est (Li & Godzik, 2006), clustal-o (Sievers et al., 2011), mafft 
(Katoh, Misawa, Kuma, & Miyata, 2002; Katoh & Standley, 2013), 
muscle (Edgar, 2004), macse (Ranwez, Douzery, Cambon, Chantret, 
& Delsuc, 2018) and trimal (Capella-Gutiérrez, Silla-Martínez, & 
Gabaldón, 2009). Installation instructions for all dependencies are 
provided in the SuperCRUNCH github wiki (https://github.com/
dport ik/Super CRUNC H/wiki).

3  | WORKFLOW

A comprehensive user-guide, including overviews for all major 
steps and detailed instructions for all modules, is available on the 
SuperCRUNCH github wiki. Several complete analyses are posted 
on the Open Science Framework SuperCRUNCH project page, avail-
able at: https://osf.io/bpt94. Here, we briefly outline the major steps 
in a typical analysis, including some technical details for key steps. 
However, we strongly encourage users to read the complete docu-
mentation available online.

3.1 | Overview

SuperCRUNCH is designed to work with fasta-formatted sequence 
data that have been previously downloaded (e.g. from GenBank) or 
are locally available (e.g. processed sequences from in-house pro-
jects). No connection to live databases (such as NCBI) is required. 
Three input files are needed to perform a typical analysis: a set of 
sequence records in fasta format, a list of taxonomic names and a 

list of loci (or genes) and associated search terms. The contents of 
these input files are described in greater detail below. The general 
workflow involves assessing taxonomy, parsing loci, similarity fil-
tering, sequence selection, sequence alignment and various post-
alignment tasks (Figure 1). The taxonomy used is user-supplied 
(e.g. not explicitly linked to any online databases). Therefore, an 
important first step is to identify and resolve potential conflicts 
between the user-supplied taxon list and the taxon labels in the 
sequence records. Afterwards, searches are conducted to identify 
records that putatively belong to loci (based on the content of re-
cord labels). These records are then written to locus-specific files. 
The sequences in each locus are then subjected to more stringent 
filtering using similarity searching (via nucleotide BLAST). This 
step removes non-homologous sequences and trims homologous 
sequences to remove non-target regions. After similarity filter-
ing, the sequence-selection step allows selection of one sequence 
per species per locus or including all sequences. For both options, 
several additional filters (e.g. requiring an error-free reading frame, 
minimum length or voucher information) can be used to ensure 
only high-quality sequences are retained. Sequences can then be 
prepared for alignment (adjusting direction and/or reading frame) 
and subsequently aligned using several alignment methods. After 
alignment, sequences can be relabelled, and the alignments can 
be trimmed, converted to multiple formats and concatenated. 
SuperCRUNCH analyses end with the production of fully format-
ted input files that are compatible with numerous phylogenetic and 
population-genetic programs. Below, we provide additional details 
for the major steps outlined here.

3.2 | Starting sequences

SuperCRUNCH requires a single fasta file of nucleotide sequence 
records as the main input. The fasta file can contain records 
from GenBank, unpublished sequence records or a combination. 
GenBank data can be obtained by searching for relevant taxonomy 

F I G U R E  1   A depiction of the general 
steps (and associated modules) involved 
in full SuperCRUNCH analyses. Each step 
is outlined in a corresponding entry of the 
same title in the Workflow section of the 
main text
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terms or organism identifier codes on that database, and down-
loading the records in fasta format. For clades with many spe-
cies, downloading all records directly may not be possible. For 
these groups, results from multiple searches using key organism 
identifiers can be downloaded and combined into a single fasta 
file. Automated downloading of GenBank sequence data through 
SuperCRUNCH is currently not supported, but will be included in a 
future release. Locally generated data should be formatted similar 
to GenBank records. A typical record should contain an accession 
number (a unique identifier code), a taxon label (two-part or three-
part name, genus/species or genus/species/subspecies) and locus 
information (gene abbreviation and/or full name). Voucher infor-
mation is optional. Additional details and examples of how to label 
Sanger-sequenced and sequence-capture datasets are provided in 
the online documentation.

3.3 | Assessing taxonomy

SuperCRUNCH allows any taxonomy to be used. Taxonomy is sup-
plied as a simple text file with one taxon name per line. Two-part 
and three-part names can be used. SuperCRUNCH offers the op-
tion to include or exclude subspecies. If subspecies are excluded, 
the third component of any three-part name is ignored, thereby 
reducing it to a two-part name. A taxon list can therefore con-
tain a mix of species and subspecies names, even if subspecies are 
not desired. Although SuperCRUNCH does not connect with any 
taxonomy databases, lists of taxon names for large clades can be 
obtained through such databases, including the NCBI Taxonomy 
Browser or Global Names Database (Patterson, Mozzherin, 
Shorthouse, & Thessen, 2016). Many groups also have taxonomic 
databases, such as the Reptile Database (Uetz, Freed, & Hošek, 
2018) and AmphibiaWeb (2019). These usually contain up-to-date 
taxonomies in a downloadable format. Taxon names can also be 
extracted directly from fasta files using the Fasta_Get_Taxa.py 
module. This option is most useful for unpublished sequences and 
sequence sets with few species.

Ideally, the user-supplied taxonomy will match the taxon names 
in the sequence records. However, taxonomy can change rapidly  
and conflicts often arise. To pass initial filtering steps, a record must 
have a taxon label that matches a name in the user-supplied taxon-
omy. Before beginning any filtering steps, it is therefore important to 
understand how compatible the user-supplied taxonomy is with the 
sequence-record set. The Taxa_Assessment.py module will perform an 
initial search across records to identify all records with a taxon label 
contained in the provided taxonomy, and identify all records with 
an unmatched taxon label (which would fail initial filtering steps). A 
list of unmatched taxon names is provided as output. External tools  
such as organismal databases, taxize/pytaxize (Chamberlain & Szöcs, 
2013; Chamberlain et al., 2017), or the resolver function in the  
Global Names Database (Patterson et al., 2016), can be used to iden-
tify a ‘correct’ name for an unmatched name. If a set of updated names 
is supplied for a set of unmatched names, the Rename_Merge.py  

module can be used to relabel all relevant records with the updated 
names, thus allowing them to pass the initial filtering steps. The 
combination of these two taxonomy modules allows users to correct 
minor labelling errors (such as misspellings), reconcile synonymies or 
completely update names to a newer taxonomy.

3.4 | Parsing loci

The Parse_Loci.py module conducts searches for specific loci using a 
set of user-supplied search terms, including gene abbreviations and 
full gene names. All searches are conducted using SQL with a local 
database constructed from the input sequences, and the initial as-
signment of a sequence to a locus is based purely on matches to the 
record labelling. For a sequence to be written to a locus-specific file, 
it must match either the gene abbreviation or description for that 
locus, and it must have a taxon label present in the user-supplied tax-
onomy. This approach creates smaller locus-specific sequence sets 
from the initial sequence set, which are more tractable for down-
stream similarity searches (vs. ‘all-by-all’ clustering).

The success of finding sequences using SuperCRUNCH depends 
on providing appropriate gene abbreviations and labels. We recom-
mend searching on GenBank to identify common labelling or using 
gene databases such as GeneCards (Stelzer et al., 2016). There is 
no hard upper bound on how many loci can be searched for. Thus, 
SuperCRUNCH can be used to process large phylogenomic datasets 
(e.g. sequence-capture experiments) including those with thousands 
of species and loci. Whole mitochondrial genomes can also be in-
cluded for any search involving a particular mitochondrial gene (see 
below). Recommendations for optimizing locus searches for differ-
ent data types are provided in the online documentation.

The choice of loci will be group-specific. Previous phylogenetic/
phylogeographic papers can be used to identify appropriate loci. 
The best criteria for selecting loci remain unresolved. One relevant 
criterion is completeness (e.g. including only loci present in >20% 
of the species). For each search conducted with Parse_Loci.py, the 
number of sequences found for each locus will be output. Therefore, 
it can be used to survey the availability of sequences for each locus. 
A downstream step allows loci to be filtered based on a minimum 
number of required sequences, so decisions can be made after ad-
ditional filtering.

The Parse_Loci.py module performs another important task: au-
tomatically detecting voucher information in those sequence record 
labels containing a ‘voucher’, ‘strain’ or ‘isolate’ field (see online doc-
umentation). This information is written into the records as a new tag 
that is discoverable in other downstream steps, allowing the creation 
of ‘vouchered’ datasets.

3.5 | Similarity filtering

SuperCRUNCH offers two parallel methods for filtering sequences 
based on similarity. Each method uses nucleotide BLAST to perform 
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searches, but they differ in whether reference sequences are au-
tomatically selected (Cluster_Blast_Extract.py) or user-provided 
(Reference_Blast_Extract.py) (Figure 2). The automatic selection of 
reference sequences is appropriate for loci consisting of ‘simple’ se-
quence records (Figure 2). We define ‘simple’ record sets as those 
generally containing a single gene region with limited length varia-
tion, which results from use of the same primers (Sanger-sequencing) 
or probes (sequence capture) to generate sequences. The Cluster_
Blast_Extract.py module can be used for these types of loci. These 
generally include nuclear markers and those from commercial probe 
sets (e.g. UCEs: ultraconserved elements). The Cluster_Blast_Extract.
py module begins by clustering sequences based on similarity using 
cd-hit-est. It then identifies the largest sequence cluster, and desig-
nates that as the reference sequence set (Figure 2). All starting se-
quences (including those in the reference cluster) are then blasted 
to this reference using BLASTn. This method is convenient for auto-
mating the process of similarity filtering for ‘simple’ records and can 
be used to screen thousands of loci.

However, Cluster_Blast_Extract.py will fail for loci containing 
‘complex’ sequence records. ‘Complex’ records include those con-
taining the target region plus non-target sequence (e.g. other regions 
or genes). Common examples include long mtDNA fragments and 
whole mitogenomes (Figure 2). Another type of ‘complex’ record is a 
gene sequenced for different fragments that have little or no over-
lap. For these sequence sets, the Reference_Blast_Extract.py module 
should be used instead. Rather than identifying the reference set 
from the starting sequences via clustering, it requires a user-sup-
plied reference sequence set to perform BLASTn searches (Figure 2). 
An external reference set must be provided for each locus, and it 
ensures that only the desired regions are targeted and extracted. For 

example, a set of ND2 reference sequences can be used to extract 
only ND2 regions from a record set comprised of whole mitochon-
drial genomes, multi-gene mitochondrial sequences and partial ND2 
records.

For both modules, the BLASTn algorithm can be specified by 
the user (blastn, blastn-short, megablast or dc-megablast), allow-
ing searches to be tailored to interspecific or intraspecific datasets. 
After BLASTn searches are conducted for a locus, sequences with-
out significant matches are discarded. For all other sequences, the 
BLAST coordinates of all hits (excluding self-hits) are merged to iden-
tify the target region of the query sequence. Based on these coordi-
nates, the entire sequence or a trimmed portion of the sequence is 
kept. The BLAST coordinate merging action often results in a single 
continuous interval (e.g. bases 1–800). However, non-overlapping 
coordinates can also be produced (e.g. bases 1–200, 450–800). Two 
common examples (sequences containing stretches of N's or gene 
duplications) are illustrated in Figure 3.

Multiple options are available for handling non-overlapping 
sequence intervals. The default option is ‘span’, which bridges 
non-overlapping intervals <X base pairs apart, where X is the default 
value (100 bp) or a user-supplied value. However, if the gap is >X 
bases, the longest interval is selected instead. The ‘nospan’ method 
will simply select the longest interval of the coordinate set, and 
the ‘all’ method will concatenate the sequence intervals together. 
Results from each option are shown in Figure 3.

An optional contamination-filtering step is available (Contamination_
Filter.py). This step excludes all sequences scoring >95% identity for 
at least 100 continuous base pairs to the reference sequences. Here, 
the contamination reference sequences should correspond to the ex-
pected source of contamination (see documentation).

F I G U R E  2   An illustration of the similarity searching workflows occurring in the Cluster_Blast_Extract.py and Reference_Blast_Extract.py 
modules. Green colour represents target regions, and all other colours represent non-target regions
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3.6 | Sequence selection

SuperCRUNCH can construct two fundamentally different datasets: 
species-level supermatrices and population-level (phylogeographic) 
datasets. The Filter_Seqs_and_Species.py module is used to select the 
sequences necessary to construct either dataset (using the ‘oneseq’ 
or ‘allseqs’ options). For supermatrices, a single sequence is typically 
used to represent each species for each gene. If multiple sequences 
for a given gene exist for a given species (e.g. because multiple in-
dividuals were sampled), then an objective strategy must be used 
for sequence selection. Filter_Seqs_and_Species.py offers several op-
tions, including the simplest solution: sorting sequences by length 
and selecting the longest sequence (‘length’ method). An additional 
filter can be applied to protein-coding loci, termed ‘translate’. This is 
an extension of the ‘length’ method, which limits sequences to those 
containing a valid reading frame (determined by translation in all for-
ward and reverse frames), thereby removing sequences with errors. 
However, if no sequences pass translation, the longest sequence is 
selected rather than excluding the taxon. The ‘randomize’ feature 
can be used to select a sequence randomly from the set available 
for a taxon, which will generate supermatrix permutations. Finally, 
the ‘vouchered’ option will only allow sequences with a voucher tag 
(generated by Parse_Loci.py). For all selection options, sequences 
must meet a minimum base-pair threshold set by the user. This will 
determine the smallest amount of data that can be included for a 
given marker for a given terminal taxon. However, the optimal mini-
mum is another unresolved issue.

To build a population-level dataset, all sequences passing the 
minimum base pair threshold will be kept. The ‘translate’ option 

can be used to only include sequences that pass translation, and 
the ‘vouchered’ option will only include sequences with a voucher 
tag. The ‘vouchered’ option should be selected to build a popula-
tion-level dataset that allows samples to be linked by voucher in-
formation. Additional information on how various options affect 
supermatrix and population-level datasets is available online.

The Filter_Seqs_and_Species.py module provides key output files 
for reproducibility and transparency. For each locus, this includes a 
BatchEntrez-compatible list of all accession numbers from the input 
file, a per-species list of accession numbers and a comprehensive sum-
mary of the sequence(s) selected for each species (accession number, 
length, translation test results and number of alternative sequences 
available). The Infer_Supermatrix_Combinations.py module can be used 
to infer the total number of possible supermatrix combinations (based 
on the number of available alternative sequences per taxon per locus). 
Following the selection of representative sequences, the Make_Acc_
Table.py module can be used to generate a table of GenBank acces-
sion numbers for all taxa and loci. This can be created for species-level 
supermatrices and ‘vouchered’ population-level datasets.

3.7 | Multiple sequence alignment

SuperCRUNCH includes two pre-alignment steps and several op-
tions for multiple sequence alignment. One pre-alignment mod-
ule (Adjust_Direction.py) adjusts the direction of all sequences in 
each locus-specific fasta file in combination with mafft. This step 
produces unaligned fasta files with all sequences written in the 
correct orientation (thereby avoiding major pitfalls with aligners). 

F I G U R E  3   A demonstration of the options available for handling non-overlapping BLAST coordinates for query sequences with two 
common examples: (a) a sequence that contains a stretch of N's, and (b) a long sequence containing multiple genes (represented by letters) 
that also contains a gene duplication (indicated by C1 and C2), such as an organellar genome. In both sequences, green represents the target 
region and grey represents either missing data (a) or non-target regions (b). The resulting merged BLAST coordinates are shown for each 
sequence, along with which coordinates would be selected under the available options. Here, the 'span' method uses the default number 
of bases to attempt bridging (100 bp). For scenario (a), the 'span' method successfully bridges the non-overlapping intervals because they 
are separated by 70 bp (below the 100 bp limit), thereby reconstructing the original sequence. For scenario (b), the 'span' method does 
bridge the non-overlapping intervals because they are separated by 1,300 bp (exceeding the 100 bp limit), and so the longest interval of 
the interval set is selected instead. The 'nospan' method selects the single longest interval from the set of non-overlapping intervals, and is 
the most conservative approach. Note that 'span' and 'nospan' methods produce the same result when the intervening non-target sequence 
exceeds the bp bridging limit (e.g., scenario b). The 'all' method concatenates the non-overlapping intervals, which can have desirable or 
undesirable effects depending on the sequence. In scenario (a) the 'all' method removes the 70 bp stretch of N's from the sequence (which 
may be desirable), but in scenario (b) the C1 and C2 genes are concatenated and will likely cause severe problems for sequence alignment
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Sequences for any locus can be aligned using the Align.py module 
with one of several popular aligners (mafft, muscle and clustal-o) 
or with all aligners sequentially. For protein-coding loci, the macse 
translation aligner is also available, which is capable of aligning cod-
ing sequences with respect to their translation while allowing for 
multiple frameshifts or stop codons. To use this alignment method, 
the Coding_Translation_Tests.py module can be used to identify the 
correct reading frame of sequences, adjust them to the first codon 
position and ensure completion of the final codon. Although macse 
can be run on a single set of reliable sequences (e.g. only those 
that passed translation), it has an additional feature allowing si-
multaneous alignment of a set of reliable sequences and a set of 
unreliable sequences (e.g. those that failed translation), using dif-
ferent parameters. The Coding_Translation_Tests.py module can be 
used to generate all the necessary input files to perform this type 
of simultaneous alignment using macse (see online documentation).

The alignment methods implemented in SuperCRUNCH are not 
intended to produce ultra-large alignments containing several thou-
sand sequences per gene. To create ultra-large alignments, we rec-
ommend using external alignment methods such as SATé-II (Liu et al., 
2012), PASTA (Mirarab et al., 2015) or UPP (Nguyen, Mirarab, Kumar, 
& Warnow, 2015). We also recommend using UPP to create align-
ments for loci containing a mix of full-length sequences and short 
sequence fragments, as these conditions are problematic for many 
alignment methods (Nguyen et al., 2015).

3.8 | Post-alignment tasks

After multiple sequence alignment, there are several tasks that can 
help prepare datasets for downstream analyses. One important 
task involves relabelling sequences using the Fasta_Relabel_Seqs.py 
module, such that sequence labels are composed of taxon labels, 
accession numbers, voucher codes or some combination. The rela-
belling strategy will depend on the type of dataset being produced 
(and whether concatenation is intended). Recommendations are 
provided in the online documentation. Regardless, this step is es-
sential because full-length labels are incompatible with many down-
stream programs. Relabelled fasta files can be converted into other 
commonly used formats (nexus, phylip) using the Fasta_Convert.py 
module.

SuperCRUNCH offers two different approaches for automated 
alignment trimming, although the overall value of trimming remains 
debatable (Tan et al., 2015). The Trim_Alignments_Trimal.py module 
uses several implementations of trimal (‘gap-threshold’, ‘gappyout’ 
and ‘noallgaps’) to trim alignments. The Trim_Alignments_Custom.py 
module is based on the custom trimming routine in phyluce (Faircloth, 
2016). This version allows edge trimming, row trimming or both.

Relabelled alignment files can be concatenated using the 
Concatenation.py module. This module allows fasta or phylip input 
and output formats. The user can also select the symbol for miss-
ing data (-, N, ?). It produces a log file containing the number of 
loci for each terminal taxon and a data partitions file (containing 

the corresponding base pairs for each locus in the alignment). The 
Concatenation.py module can be used for any dataset in which la-
bels are consistent across loci, including species-level supermatrices 
(with taxon labels) and ‘vouchered’ population-level datasets (with 
taxon/voucher combination labels). See online documentation for 
more details.

4  | DEMONSTR ATIONS AND 
COMPARISONS

To demonstrate the full range of features available in SuperCRUNCH, 
we constructed several types of datasets. These included small 
population-level datasets (<300 sequences, <10 loci), a ‘vouchered’ 
phylogeographic dataset (~100 samples, 4 loci), traditional super-
matrices (~1,500 species, ~70 loci) and phylogenomic supermatrices 
(~2,000 UCE loci, <20 samples). In addition, we demonstrate how 
SuperCRUNCH can be used to add published outgroup sequences 
to a supermatrix of locally generated sequences. Finally, we com-
pared the ability of SuperCRUNCH to construct species-level su-
permatrices relative to the program PyPHLAWD (Smith & Walker, 
2018), using two test clades (Iguania and Dipsacales). In addition to 
comparing supermatrix characteristics (taxa, loci and sequences), we 
also compared the resulting phylogenies (including the number of 
genera and families recovered as monophyletic). Details are given in 
Supporting Information S1. All analyses are available as tutorials on 
the SuperCRUNCH project page on the Open Science Framework 
(https://osf.io/bpt94 /). Analyses were run on an iMac with a 4.2 GHz 
quad-core Intel Core i7 with 32 GB RAM.

5  | RESULTS

Detailed results for all analyses are provided in Supporting 
Information S1, and are briefly summarized here. SuperCRUNCH 
produced a large supermatrix (~1,500 species, ~60 loci, ~13,000 
sequences) in ~1.5 hr, but with more thorough settings ran up to 
13 hr. This difference in runtimes is largely attributable to the align-
ment step, with MAFFT taking ~4 min and MACSE requiring 11 hr. 
SuperCRUNCH successfully reconstructed a published phylogeo-
graphic dataset (<1 min) and a published phylogenomic supermatrix 
(~25 min). It rapidly created new combinations of population-level 
datasets from multiple published sources (<1 min). It also added 
GenBank sequences for hundreds of outgroups to a local (unpub-
lished) supermatrix project (<4 min).

SuperCRUNCH outperformed PyPHLAWD in all supermatrix 
comparisons, recovering more taxa and sequences in both test 
clades. For example, given the same starting sequences for the 
Iguania dataset, SuperCRUNCH found ~300 more taxa (1,359 vs. 
1,069) and ~2,300 more sequences (12,676 vs. 10,397). PyPHLAWD 
experienced a severe performance drop for loci containing ‘com-
plex’ records (those with multiple loci or non-overlapping regions), 
and thereby lost 63% of the available mtDNA sequences (>2,000 

https://osf.io/bpt94/
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sequences discarded). SuperCRUNCH supermatrices also generated 
higher quality phylogenies, recovering more genera as monophyletic 
in all comparisons. Additional results for these comparisons are dis-
cussed in Supporting Information S1, and all analyses are available 
on the Open Science Framework (https://osf.io/bpt94 /).

6  | DISCUSSION

SuperCRUNCH is a versatile bioinformatics toolkit that can be used 
to create large phylogenetic datasets. It contains many novel features 
that improve its functionality. Most importantly, SuperCRUNCH is 
not restricted to GenBank sequence data. It can be used to process 
unpublished sequences, and combinations of GenBank and unpub-
lished data. Many programs rely on GenBank database releases 
to retrieve starting sequences and obtain metadata. In contrast, 
SuperCRUNCH infers metadata directly from user-supplied starting 
sequences, and constructs local databases to perform searches. This 
design explicitly allows for the inclusion of unpublished sequence 
data. SuperCRUNCH also includes a key step that allows for either 
selecting one sequence per species, or all sequences, generating 
either species-level supermatrices or population-level datasets. 
Furthermore, filtering options are available for both (passing trans-
lation, minimum length), ensuring only high-quality sequences are 
included in both types of datasets.

A population-level (phylogeographic) dataset includes multi-
ple sequences per species per locus. It is straightforward to collect 
all sequences available for a particular gene for a given species. 
However, there may be little overlap of sampling across loci. For 
example, different individuals may have been sequenced for dif-
ferent loci in different studies. Identifying sequences derived from 
the same sample can be difficult and requires integrating voucher 
information. Incorporating additional sequences (published or un-
published) into phylogeographic datasets can be challenging, given 
the difficulty of identifying and matching voucher information in 
sequence records. SuperCRUNCH automates these tasks, creating 
‘vouchered’ datasets. The ‘vouchered’ feature of SuperCRUNCH 
only allows sequences with a voucher code to pass the filtering steps 
used to create a population-level dataset. The final sequences are 
relabelled using the voucher information (typically taxon name plus 
voucher code), such that sequences derived from the same sample 
share an identical label. Together, these features allow the rapid 
reconstruction of published phylogeographic datasets, merging of 
published and unpublished data to create new datasets, and con-
struction of datasets from locally generated sequences (especially 
from sequence-capture experiments).

SuperCRUNCH initially identifies sequences using record labels, 
moves the relevant sequences to locus-specific files and performs 
similarity searches on reduced-sequence sets. Many other programs 
attempt to cluster all starting sequences to produce putatively orthol-
ogous sequence clusters. This can be a useful approach, particularly 
if the target loci are unknown beforehand. However, these ‘all-by-all’  
clustering approaches do not allow target loci to be specified, 

require additional steps to identify the content of sequence clusters 
and can result in the inclusion of paralogous sequences. In certain 
conditions, the clusters produced from a ‘complex’ record set can 
be redundant, introducing biases into supermatrices (e.g. a single 
locus repeated multiple times). SuperCRUNCH putatively assigns 
sequences to a locus based on the presence of locus search terms 
in the record label (similar to phyloGenerator). This strategy allows 
specific loci to be targeted, establishes a clear identity for the se-
quences and reduces the chance of including paralogous sequences 
(which should have a different gene label). In SuperCRUNCH, the 
label-matching strategy is always paired with downstream similar-
ity searches (e.g. BLASTn). This design provides multiple filters to 
help eliminate non-target sequences. Thus, SuperCRUNCH can ac-
curately target and build datasets composed of thousands of loci, 
including UCEs and other sequence-capture loci. It is difficult to 
reliably perform this task using ‘all-by-all’ clustering of starting se-
quences. Even the recently proposed ‘baited’ clustering approach 
of PyPHLAWD, which requires a reference sequence set for each 
locus, is prohibitive for large genomic datasets (e.g. ~5,000 UCE 
loci). However, we acknowledge the success of the label-matching 
strategy relies on defining appropriate search terms. Unanticipated 
issues like gene name synonymies can exclude relevant sequences 
during label-matching (Supporting Information S1). When orthol-
ogous sequences are labelled under synonymous gene names,  
‘all-by-all’ clustering will recover more sequences if the full set of 
gene names is not included in the label-matching search (Supporting 
Information S1). This problem can be partially mitigated using gene 
databases to identify synonymies. In SuperCRUNCH, multiple gene 
abbreviations and gene descriptions can be included to search for a 
given target locus. Given that searches for loci are conducted using 
SQL, they are fast and can be executed using iteratively refined 
search terms to optimize results.

SuperCRUNCH also offers improved methods for similarity 
searches. These include the ability to specify BLASTn algorithms, 
improved BLAST coordinate merging and sequence trimming, and 
flexible choices for selecting reference sequences. Unless speci-
fied, the default algorithm used by nucleotide BLAST is megablast, 
which is best for finding highly similar sequences in intraspecific 
searches (e.g. population-level datasets). In contrast, discontig-
uous megablast performs substantially better for interspecific 
searches (Camacho et al., 2009; Ma, Tromp, & Li, 2002), and it is 
preferable for species-level supermatrices. In many cases, merging 
the BLAST coordinates obtained from a query sequence is trivial 
and results in a single continuous target region. However, mul-
tiple non-overlapping target regions may also occur for a query 
sequence, and SuperCRUNCH offers several novel options to 
handle these cases (Figure 3). Furthermore, SuperCRUNCH uses 
the resulting coordinates to automatically trim sequences to the 
target region, if necessary. This non-standard trimming action en-
sures that only sequence regions homologous to the reference- 
sequence set are kept. SuperCRUNCH also offers two options for 
designating reference sequences: reference sequences can be se-
lected automatically from the sequence set, or can be supplied by 

https://osf.io/bpt94/
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the user (Figure 2). Automatic selection of reference sequences is 
appropriate for ‘simple’ sequence records (i.e. same gene regions), 
and can efficiently perform similarity searches for thousands of 
loci. User-supplied references are more appropriate for ‘complex’ 
sequence records (multiple loci or non-overlapping regions), or 
whenever fine-control over the target region is desired. Although 
this latter option requires gathering reference sequences manu-
ally, it is powerful and can be used to extract a single mtDNA gene 
region from a record set containing a mix of whole mitochondrial 
genomes, long multi-gene mtDNA sequences and shorter target 
sequences.

Despite many improvements implemented in SuperCRUNCH, an 
important and general issue is the accuracy of GenBank sequence 
data. This issue can affect SuperCRUNCH and all other programs 
that process GenBank data. For example, errors may arise through 
incorrect uploading of data, misidentified specimens, contamina-
tion and other laboratory errors. Data errors can occur in record 
labels, and include incorrect gene, taxon or voucher information. 
With regards to contamination, we identified two human mtDNA 
sequences labelled as lizards in our iguanian supermatrix analysis 
(HM040901.1, KP899454.1; Supplemental File 1). The contamina-
tion filter in SuperCRUNCH can detect and eliminate some problems 
of this kind, but it cannot readily identify cases of misidentified or 
mislabelled sequences within the focal group. Misidentified speci-
mens are perhaps the most difficult problem to detect, particularly 
at a shallow taxonomic scale (e.g. a specimen assigned to the wrong 
species within the same genus or family). Although similarity filtering 
can generally be used to correctly establish gene identities, parallel 
approaches for identifying inaccurate taxon labelling within the focal 
group are generally lacking. Overall, data accuracy is a general prob-
lem for the supermatrix approach regardless of the methods used to 
process the data. Automatic identification of inaccurate sequence 
records would be a useful goal for future studies of supermatrix 
construction.

The initial motivation behind SuperCRUNCH was to increase 
transparency and reproducibility across all steps in dataset con-
struction. We therefore encourage researchers running analyses 
with SuperCRUNCH to publish the information needed to repro-
duce their results. This includes accession numbers for the start-
ing sequence set, the taxon list file, the locus search terms file and 
the ancillary files and commands used to execute steps. We also 
emphasize that SuperCRUNCH is highly modular and performing 
a SuperCRUNCH analysis does not require running the full pipe-
line. As such, SuperCRUNCH modules can be incorporated into 
any bioinformatics pipeline or used in conjunction with features 
of other currently available programs. Alternative programs offer 
important features that may serve different needs beyond those 
available in SuperCRUNCH (e.g. SUPERSMART performs phyloge-
netic analyses on the supermatrices that it generates). Given the 
rapid growth of sequence data on GenBank (NCBI, 2019) and the 
changing landscape of phylogenomics, flexible and adaptable bioin-
formatics approaches are needed to continue mining and managing 
phylogenetic datasets.
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