
Methods Ecol Evol. 2020;11:763–772.	 wileyonlinelibrary.com/journal/mee3�  |  763© 2020 British Ecological Society

Received: 5 November 2019  |  Accepted: 11 March 2020

DOI: 10.1111/2041-210X.13392

R E S E A R C H A R T I C L E

SuperCRUNCH: A bioinformatics toolkit for creating and
manipulating supermatrices and other large phylogenetic
datasets

Daniel M. Portik1,2  | John J. Wiens1

1Department of Ecology and Evolutionary
Biology, University of Arizona, Tucson, AZ,
USA
2California Academy of Sciences, San
Francisco, CA, USA

Correspondence
Daniel M. Portik
Email: daniel.portik@gmail.com

Funding information
National Science Foundation, Grant/Award
Number: DEB 1655690

Handling Editor: David Orme

Abstract
1.	 Phylogenies with extensive taxon sampling have become indispensable for many

types of ecological and evolutionary studies. Many large-scale trees are based on
a ‘supermatrix’ approach, which involves amalgamating thousands of published
sequences for a group. Constructing up-to-date supermatrices can be challenging,
especially as new sequences may become available almost constantly. Additionally,
genomic datasets (composed of thousands of loci) are becoming common in phy-
logenetics and phylogeography, and present novel challenges for constructing
such datasets.

2.	 Here we present SuperCRUNCH, a Python toolkit for assembling large phyloge-
netic datasets. It can be applied to GenBank sequences, unpublished sequences
or combinations of GenBank and unpublished data. SuperCRUNCH constructs
local databases and uses them to conduct rapid searches for user-specified sets
of taxa and loci. Sequences are parsed into putative loci and passed through rigor-
ous filtering steps. A post-filtering step allows for selection of one sequence per
taxon (i.e. species-level supermatrix) or retention of all sequences per taxon (i.e.
population-level dataset). Importantly, SuperCRUNCH can generate ‘vouchered’
population-level datasets, in which voucher information is used to generate
multi-locus phylogeographic datasets. SuperCRUNCH offers many options for
taxonomy resolution, similarity filtering, sequence selection, alignment and file
manipulation.

3.	 We demonstrate the range of features available in SuperCRUNCH by generating a
variety of phylogenetic datasets. Output datasets include traditional species-level
supermatrices, large-scale phylogenomic matrices and phylogeographic datasets.
Finally, we briefly compare the ability of SuperCRUNCH to construct species-
level supermatrices relative to alternative approaches. SuperCRUNCH gener-
ated a large-scale supermatrix (1,400 taxa and 66 loci) from 16 GB of GenBank
data in ~1.5 hr, and generated population-level datasets (<350 samples, <10 loci)
in <1 min. It outperformed alternative methods for supermatrix construction in
terms of taxa, loci and sequences recovered.

4.	 SuperCRUNCH is a modular bioinformatics toolkit that can be used to assemble
datasets for any taxonomic group and scale (kingdoms to individuals). It allows

www.wileyonlinelibrary.com/journal/mee3
mailto:﻿
https://orcid.org/0000-0003-3518-7277
https://orcid.org/0000-0003-4243-1127
mailto:daniel.portik@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13392&domain=pdf&date_stamp=2020-04-11

764  |    Methods in Ecology and Evolu
on PORTIK and WIENS

1  | INTRODUC TION

Large-scale phylogenies, including hundreds or thousands of spe-
cies, have become essential for many studies in ecology and evolu-
tionary biology. Many of these large-scale phylogenies are based on
the supermatrix approach (e.g. de Queiroz & Gatesy, 2007), which
typically involves amalgamating thousands of sequences from public
databases (e.g. GenBank). Several tools exist for assembling these
datasets, which differ in their approach and functionality. These
include programs like PhyLoTA (Sanderson, Boss, Chen, Cranston,
& Wehe, 2008), PHLAWD (Smith, Beaulieu, & Donoghue, 2009),
phyloGenerator (Pearse & Purvis, 2013), SUMAC (Freyman, 2015),
SUPERSMART (Antonelli et al., 2017), PhylotaR (Bennett et al., 2018)
and PyPHLAWD (Smith & Walker, 2018). These programs have greatly
improved access to GenBank data, and several have been success-
fully used in a variety of research contexts. However, each program
comes with its own pros and cons for assembling molecular data-
sets. For example, several programs employ automated (‘all-by-all’)
clustering of all sequences. This approach enables the discovery
of orthologous sequence sets, which is useful if target loci are un-
known. However, searching for specific loci is generally incompatible
with the ‘all-by-all’ clustering approaches. As genomic datasets com-
posed of several thousand loci become increasingly common, the
ability to specify target loci will be essential for building customized
phylogenomic datasets. Additionally, many programs use a GenBank
database release to obtain starting sequences, in which users specify
a taxon and the relevant sequence data are downloaded automati-
cally. This design is useful and convenient, but it unfortunately pre-
vents the inclusion of locally generated (e.g. unpublished) sequence
data, thereby limiting analyses to published sequences. A majority of
methods were designed to create species-level datasets, in which a
species is represented by one sequence per locus (e.g. a traditional
supermatrix). It is typically not possible to use these methods to gen-
erate phylogeographic (population-level) datasets, in which a species
is represented by many individuals sequenced for anywhere from
one gene to thousands of loci. The dramatic increase in the avail-
ability and size of phylogeographic datasets (Garrick et al., 2015;
McCormack, Hird, Zellmer, Carstens, & Brumfield, 2013) has created
a need for methods which can construct large-scale population-level

datasets. Additionally, no current methods utilize voucher codes (e.g.
a field series, museum number or other identifier). These codes are
critical for linking samples and building phylogeographic datasets.
Thus, producing high-quality phylogenetic datasets can be chal-
lenging using the available methods, and programs with new func-
tionality are required to keep pace with the changing landscape of
phylogenetics and phylogeography.

To address these challenges, we developed SuperCRUNCH,
a semi-automated method for creating phylogenetic and phylo-
geographic datasets. SuperCRUNCH can be used to process se-
quences from GenBank, datasets containing only locally generated
(unpublished) sequences or a combination of sequence types.
During initial steps, the sequence data are parsed into loci based on
user-supplied lists of taxa and loci, offering fine-control for targeted
searches. SuperCRUNCH allows any taxonomy to be used, and of-
fers simple steps for identifying and resolving taxonomic conflicts.
SuperCRUNCH also includes refined methods for similarity filtering,
quality filtering and sequence selection. By offering the option to
select one representative sequence per species or retain all filtered
sequences, SuperCRUNCH can be used to generate species-level
datasets (one sequence per species per gene) and population-level
datasets (multiple sequences per species per gene). SuperCRUNCH
can also filter sequences using voucher codes, which can label and
link sequences in phylogeographic datasets (e.g. a ‘vouchered’ data-
set). Analyses are highly scalable and can range in size from small
population-level datasets (one taxon, one gene) to large phyloge-
nomic datasets (hundreds of taxa, thousands of loci). SuperCRUNCH
is modular in design, offering flexibility across all major steps in con-
structing phylogenetic datasets, and analyses are transparent and
highly reproducible. SuperCRUNCH is open-source, heavily docu-
mented and freely available at https://github.com/dport​ik/Super​
CRUNCH.

2  | INSTALL ATION

SuperCRUNCH consists of a set of python modules that function as
stand-alone command-line scripts. As of SuperCRUNCH v1.2, these
modules can be run using Python 2.7 or 3.7. All modules can be

rapid construction of supermatrices, greatly simplifying the process of updating
large phylogenies with new data. It is also designed to produce population-level
datasets. SuperCRUNCH streamlines the major tasks required to process phyloge-
netic data, including filtering, alignment, trimming and formatting. SuperCRUNCH
is open-source, documented and available at https://github.com/dport​ik/Super​
CRUNCH.

K E Y W O R D S

bioinformatics, GenBank, genomics, multiple sequence alignment, phylogenetics,
phylogeography, similarity filtering, supermatrix

https://github.com/dportik/SuperCRUNCH
https://github.com/dportik/SuperCRUNCH
https://github.com/dportik/SuperCRUNCH
https://github.com/dportik/SuperCRUNCH

     |  765Methods in Ecology and Evolu
onPORTIK and WIENS

downloaded and executed independently without the need to install
SuperCRUNCH as a python package or library, making them easy to
use and edit. Nevertheless, there are eight dependencies that should
be installed that enable the use of all features in SuperCRUNCH.
These include the biopython package for python, and the following
seven external dependencies: ncbi-blast+ (for blastn and makeblastdb;
Altschul, Gish, Miller, Myers, & Lipman, 1990; Camacho et al., 2009),
cd-hit-est (Li & Godzik, 2006), clustal-o (Sievers et al., 2011), mafft
(Katoh, Misawa, Kuma, & Miyata, 2002; Katoh & Standley, 2013),
muscle (Edgar, 2004), macse (Ranwez, Douzery, Cambon, Chantret,
& Delsuc, 2018) and trimal (Capella-Gutiérrez, Silla-Martínez, &
Gabaldón, 2009). Installation instructions for all dependencies are
provided in the SuperCRUNCH github wiki (https://github.com/
dport​ik/Super​CRUNC​H/wiki).

3  | WORKFLOW

A comprehensive user-guide, including overviews for all major
steps and detailed instructions for all modules, is available on the
SuperCRUNCH github wiki. Several complete analyses are posted
on the Open Science Framework SuperCRUNCH project page, avail-
able at: https://osf.io/bpt94. Here, we briefly outline the major steps
in a typical analysis, including some technical details for key steps.
However, we strongly encourage users to read the complete docu-
mentation available online.

3.1 | Overview

SuperCRUNCH is designed to work with fasta-formatted sequence
data that have been previously downloaded (e.g. from GenBank) or
are locally available (e.g. processed sequences from in-house pro-
jects). No connection to live databases (such as NCBI) is required.
Three input files are needed to perform a typical analysis: a set of
sequence records in fasta format, a list of taxonomic names and a

list of loci (or genes) and associated search terms. The contents of
these input files are described in greater detail below. The general
workflow involves assessing taxonomy, parsing loci, similarity fil-
tering, sequence selection, sequence alignment and various post-
alignment tasks (Figure 1). The taxonomy used is user-supplied
(e.g. not explicitly linked to any online databases). Therefore, an
important first step is to identify and resolve potential conflicts
between the user-supplied taxon list and the taxon labels in the
sequence records. Afterwards, searches are conducted to identify
records that putatively belong to loci (based on the content of re-
cord labels). These records are then written to locus-specific files.
The sequences in each locus are then subjected to more stringent
filtering using similarity searching (via nucleotide BLAST). This
step removes non-homologous sequences and trims homologous
sequences to remove non-target regions. After similarity filter-
ing, the sequence-selection step allows selection of one sequence
per species per locus or including all sequences. For both options,
several additional filters (e.g. requiring an error-free reading frame,
minimum length or voucher information) can be used to ensure
only high-quality sequences are retained. Sequences can then be
prepared for alignment (adjusting direction and/or reading frame)
and subsequently aligned using several alignment methods. After
alignment, sequences can be relabelled, and the alignments can
be trimmed, converted to multiple formats and concatenated.
SuperCRUNCH analyses end with the production of fully format-
ted input files that are compatible with numerous phylogenetic and
population-genetic programs. Below, we provide additional details
for the major steps outlined here.

3.2 | Starting sequences

SuperCRUNCH requires a single fasta file of nucleotide sequence
records as the main input. The fasta file can contain records
from GenBank, unpublished sequence records or a combination.
GenBank data can be obtained by searching for relevant taxonomy

F I G U R E 1   A depiction of the general
steps (and associated modules) involved
in full SuperCRUNCH analyses. Each step
is outlined in a corresponding entry of the
same title in the Workflow section of the
main text

Assess taxonomy

Parse loci

Similarity filtering

Sequence selection

Multiple sequence alignment

Post-alignment tasks

Fasta sequences Taxon list Locus search terms

https://github.com/dportik/SuperCRUNCH/wiki
https://github.com/dportik/SuperCRUNCH/wiki
https://osf.io/bpt94

766  |    Methods in Ecology and Evolu
on PORTIK and WIENS

terms or organism identifier codes on that database, and down-
loading the records in fasta format. For clades with many spe-
cies, downloading all records directly may not be possible. For
these groups, results from multiple searches using key organism
identifiers can be downloaded and combined into a single fasta
file. Automated downloading of GenBank sequence data through
SuperCRUNCH is currently not supported, but will be included in a
future release. Locally generated data should be formatted similar
to GenBank records. A typical record should contain an accession
number (a unique identifier code), a taxon label (two-part or three-
part name, genus/species or genus/species/subspecies) and locus
information (gene abbreviation and/or full name). Voucher infor-
mation is optional. Additional details and examples of how to label
Sanger-sequenced and sequence-capture datasets are provided in
the online documentation.

3.3 | Assessing taxonomy

SuperCRUNCH allows any taxonomy to be used. Taxonomy is sup-
plied as a simple text file with one taxon name per line. Two-part
and three-part names can be used. SuperCRUNCH offers the op-
tion to include or exclude subspecies. If subspecies are excluded,
the third component of any three-part name is ignored, thereby
reducing it to a two-part name. A taxon list can therefore con-
tain a mix of species and subspecies names, even if subspecies are
not desired. Although SuperCRUNCH does not connect with any
taxonomy databases, lists of taxon names for large clades can be
obtained through such databases, including the NCBI Taxonomy
Browser or Global Names Database (Patterson, Mozzherin,
Shorthouse, & Thessen, 2016). Many groups also have taxonomic
databases, such as the Reptile Database (Uetz, Freed, & Hošek,
2018) and AmphibiaWeb (2019). These usually contain up-to-date
taxonomies in a downloadable format. Taxon names can also be
extracted directly from fasta files using the Fasta_Get_Taxa.py
module. This option is most useful for unpublished sequences and
sequence sets with few species.

Ideally, the user-supplied taxonomy will match the taxon names
in the sequence records. However, taxonomy can change rapidly
and conflicts often arise. To pass initial filtering steps, a record must
have a taxon label that matches a name in the user-supplied taxon-
omy. Before beginning any filtering steps, it is therefore important to
understand how compatible the user-supplied taxonomy is with the
sequence-record set. The Taxa_Assessment.py module will perform an
initial search across records to identify all records with a taxon label
contained in the provided taxonomy, and identify all records with
an unmatched taxon label (which would fail initial filtering steps). A
list of unmatched taxon names is provided as output. External tools
such as organismal databases, taxize/pytaxize (Chamberlain & Szöcs,
2013; Chamberlain et al., 2017), or the resolver function in the
Global Names Database (Patterson et al., 2016), can be used to iden-
tify a ‘correct’ name for an unmatched name. If a set of updated names
is supplied for a set of unmatched names, the Rename_Merge.py

module can be used to relabel all relevant records with the updated
names, thus allowing them to pass the initial filtering steps. The
combination of these two taxonomy modules allows users to correct
minor labelling errors (such as misspellings), reconcile synonymies or
completely update names to a newer taxonomy.

3.4 | Parsing loci

The Parse_Loci.py module conducts searches for specific loci using a
set of user-supplied search terms, including gene abbreviations and
full gene names. All searches are conducted using SQL with a local
database constructed from the input sequences, and the initial as-
signment of a sequence to a locus is based purely on matches to the
record labelling. For a sequence to be written to a locus-specific file,
it must match either the gene abbreviation or description for that
locus, and it must have a taxon label present in the user-supplied tax-
onomy. This approach creates smaller locus-specific sequence sets
from the initial sequence set, which are more tractable for down-
stream similarity searches (vs. ‘all-by-all’ clustering).

The success of finding sequences using SuperCRUNCH depends
on providing appropriate gene abbreviations and labels. We recom-
mend searching on GenBank to identify common labelling or using
gene databases such as GeneCards (Stelzer et al., 2016). There is
no hard upper bound on how many loci can be searched for. Thus,
SuperCRUNCH can be used to process large phylogenomic datasets
(e.g. sequence-capture experiments) including those with thousands
of species and loci. Whole mitochondrial genomes can also be in-
cluded for any search involving a particular mitochondrial gene (see
below). Recommendations for optimizing locus searches for differ-
ent data types are provided in the online documentation.

The choice of loci will be group-specific. Previous phylogenetic/
phylogeographic papers can be used to identify appropriate loci.
The best criteria for selecting loci remain unresolved. One relevant
criterion is completeness (e.g. including only loci present in >20%
of the species). For each search conducted with Parse_Loci.py, the
number of sequences found for each locus will be output. Therefore,
it can be used to survey the availability of sequences for each locus.
A downstream step allows loci to be filtered based on a minimum
number of required sequences, so decisions can be made after ad-
ditional filtering.

The Parse_Loci.py module performs another important task: au-
tomatically detecting voucher information in those sequence record
labels containing a ‘voucher’, ‘strain’ or ‘isolate’ field (see online doc-
umentation). This information is written into the records as a new tag
that is discoverable in other downstream steps, allowing the creation
of ‘vouchered’ datasets.

3.5 | Similarity filtering

SuperCRUNCH offers two parallel methods for filtering sequences
based on similarity. Each method uses nucleotide BLAST to perform

     |  767Methods in Ecology and Evolu
onPORTIK and WIENS

searches, but they differ in whether reference sequences are au-
tomatically selected (Cluster_Blast_Extract.py) or user-provided
(Reference_Blast_Extract.py) (Figure 2). The automatic selection of
reference sequences is appropriate for loci consisting of ‘simple’ se-
quence records (Figure 2). We define ‘simple’ record sets as those
generally containing a single gene region with limited length varia-
tion, which results from use of the same primers (Sanger-sequencing)
or probes (sequence capture) to generate sequences. The Cluster_
Blast_Extract.py module can be used for these types of loci. These
generally include nuclear markers and those from commercial probe
sets (e.g. UCEs: ultraconserved elements). The Cluster_Blast_Extract.
py module begins by clustering sequences based on similarity using
cd-hit-est. It then identifies the largest sequence cluster, and desig-
nates that as the reference sequence set (Figure 2). All starting se-
quences (including those in the reference cluster) are then blasted
to this reference using BLASTn. This method is convenient for auto-
mating the process of similarity filtering for ‘simple’ records and can
be used to screen thousands of loci.

However, Cluster_Blast_Extract.py will fail for loci containing
‘complex’ sequence records. ‘Complex’ records include those con-
taining the target region plus non-target sequence (e.g. other regions
or genes). Common examples include long mtDNA fragments and
whole mitogenomes (Figure 2). Another type of ‘complex’ record is a
gene sequenced for different fragments that have little or no over-
lap. For these sequence sets, the Reference_Blast_Extract.py module
should be used instead. Rather than identifying the reference set
from the starting sequences via clustering, it requires a user-sup-
plied reference sequence set to perform BLASTn searches (Figure 2).
An external reference set must be provided for each locus, and it
ensures that only the desired regions are targeted and extracted. For

example, a set of ND2 reference sequences can be used to extract
only ND2 regions from a record set comprised of whole mitochon-
drial genomes, multi-gene mitochondrial sequences and partial ND2
records.

For both modules, the BLASTn algorithm can be specified by
the user (blastn, blastn-short, megablast or dc-megablast), allow-
ing searches to be tailored to interspecific or intraspecific datasets.
After BLASTn searches are conducted for a locus, sequences with-
out significant matches are discarded. For all other sequences, the
BLAST coordinates of all hits (excluding self-hits) are merged to iden-
tify the target region of the query sequence. Based on these coordi-
nates, the entire sequence or a trimmed portion of the sequence is
kept. The BLAST coordinate merging action often results in a single
continuous interval (e.g. bases 1–800). However, non-overlapping
coordinates can also be produced (e.g. bases 1–200, 450–800). Two
common examples (sequences containing stretches of N's or gene
duplications) are illustrated in Figure 3.

Multiple options are available for handling non-overlapping
sequence intervals. The default option is ‘span’, which bridges
non-overlapping intervals <X base pairs apart, where X is the default
value (100 bp) or a user-supplied value. However, if the gap is >X
bases, the longest interval is selected instead. The ‘nospan’ method
will simply select the longest interval of the coordinate set, and
the ‘all’ method will concatenate the sequence intervals together.
Results from each option are shown in Figure 3.

An optional contamination-filtering step is available (Contamination_
Filter.py). This step excludes all sequences scoring >95% identity for
at least 100 continuous base pairs to the reference sequences. Here,
the contamination reference sequences should correspond to the ex-
pected source of contamination (see documentation).

F I G U R E 2   An illustration of the similarity searching workflows occurring in the Cluster_Blast_Extract.py and Reference_Blast_Extract.py
modules. Green colour represents target regions, and all other colours represent non-target regions

Step 1:
Cluster sequences

(cd-hit-est)

Cluster 1 Cluster 2 Cluster 3

Step 2:
Set largest

cluster as reference
(makeblastdb)

Step 3:
BLAST to

reference set
(BLASTn)

Cluster 2

Step 4:
Process BLAST output,

merge coordinates,
trim sequences

Input
sequences

Output
sequences

Input
sequences

Cluster_Blast_Extract.py

Reference_Blast_Extract.py
Step 1:

Create reference from user file
(makeblastdb)

User-supplied
reference set

Step 2:
BLAST to

reference set
(BLASTn)

Step 3:
Process BLAST output,

merge coordinates,
trim sequences

Output
sequences

768  |    Methods in Ecology and Evolu
on PORTIK and WIENS

3.6 | Sequence selection

SuperCRUNCH can construct two fundamentally different datasets:
species-level supermatrices and population-level (phylogeographic)
datasets. The Filter_Seqs_and_Species.py module is used to select the
sequences necessary to construct either dataset (using the ‘oneseq’
or ‘allseqs’ options). For supermatrices, a single sequence is typically
used to represent each species for each gene. If multiple sequences
for a given gene exist for a given species (e.g. because multiple in-
dividuals were sampled), then an objective strategy must be used
for sequence selection. Filter_Seqs_and_Species.py offers several op-
tions, including the simplest solution: sorting sequences by length
and selecting the longest sequence (‘length’ method). An additional
filter can be applied to protein-coding loci, termed ‘translate’. This is
an extension of the ‘length’ method, which limits sequences to those
containing a valid reading frame (determined by translation in all for-
ward and reverse frames), thereby removing sequences with errors.
However, if no sequences pass translation, the longest sequence is
selected rather than excluding the taxon. The ‘randomize’ feature
can be used to select a sequence randomly from the set available
for a taxon, which will generate supermatrix permutations. Finally,
the ‘vouchered’ option will only allow sequences with a voucher tag
(generated by Parse_Loci.py). For all selection options, sequences
must meet a minimum base-pair threshold set by the user. This will
determine the smallest amount of data that can be included for a
given marker for a given terminal taxon. However, the optimal mini-
mum is another unresolved issue.

To build a population-level dataset, all sequences passing the
minimum base pair threshold will be kept. The ‘translate’ option

can be used to only include sequences that pass translation, and
the ‘vouchered’ option will only include sequences with a voucher
tag. The ‘vouchered’ option should be selected to build a popula-
tion-level dataset that allows samples to be linked by voucher in-
formation. Additional information on how various options affect
supermatrix and population-level datasets is available online.

The Filter_Seqs_and_Species.py module provides key output files
for reproducibility and transparency. For each locus, this includes a
BatchEntrez-compatible list of all accession numbers from the input
file, a per-species list of accession numbers and a comprehensive sum-
mary of the sequence(s) selected for each species (accession number,
length, translation test results and number of alternative sequences
available). The Infer_Supermatrix_Combinations.py module can be used
to infer the total number of possible supermatrix combinations (based
on the number of available alternative sequences per taxon per locus).
Following the selection of representative sequences, the Make_Acc_
Table.py module can be used to generate a table of GenBank acces-
sion numbers for all taxa and loci. This can be created for species-level
supermatrices and ‘vouchered’ population-level datasets.

3.7 | Multiple sequence alignment

SuperCRUNCH includes two pre-alignment steps and several op-
tions for multiple sequence alignment. One pre-alignment mod-
ule (Adjust_Direction.py) adjusts the direction of all sequences in
each locus-specific fasta file in combination with mafft. This step
produces unaligned fasta files with all sequences written in the
correct orientation (thereby avoiding major pitfalls with aligners).

F I G U R E 3   A demonstration of the options available for handling non-overlapping BLAST coordinates for query sequences with two
common examples: (a) a sequence that contains a stretch of N's, and (b) a long sequence containing multiple genes (represented by letters)
that also contains a gene duplication (indicated by C1 and C2), such as an organellar genome. In both sequences, green represents the target
region and grey represents either missing data (a) or non-target regions (b). The resulting merged BLAST coordinates are shown for each
sequence, along with which coordinates would be selected under the available options. Here, the 'span' method uses the default number
of bases to attempt bridging (100 bp). For scenario (a), the 'span' method successfully bridges the non-overlapping intervals because they
are separated by 70 bp (below the 100 bp limit), thereby reconstructing the original sequence. For scenario (b), the 'span' method does
bridge the non-overlapping intervals because they are separated by 1,300 bp (exceeding the 100 bp limit), and so the longest interval of
the interval set is selected instead. The 'nospan' method selects the single longest interval from the set of non-overlapping intervals, and is
the most conservative approach. Note that 'span' and 'nospan' methods produce the same result when the intervening non-target sequence
exceeds the bp bridging limit (e.g., scenario b). The 'all' method concatenates the non-overlapping intervals, which can have desirable or
undesirable effects depending on the sequence. In scenario (a) the 'all' method removes the 70 bp stretch of N's from the sequence (which
may be desirable), but in scenario (b) the C1 and C2 genes are concatenated and will likely cause severe problems for sequence alignment

NNNNNNNNN

150 bp 70 bp 250 bp
9,000 bp total470 bp total

A B C1 D E F C2 G

900 bp 880 bp
BLAST Coordinates:
[1–150], [220–470]

BLAST Coordinates:
[3,800–4,700], [6,000–6,880]

Span [1–470]
150 bp 70 bp 250 bp

Nospan [220–470]
250 bp

All [1–150], [220–470]
150 bp 250 bp

Span

Nospan

All

[3,800–4,700]

[3,800–4,700]

[3,800–4,700], [6,000–6,880]

C1

900 bp

C1

900 bp

C1 C2

900 bp 880 bp

(a) (b)

     |  769Methods in Ecology and Evolu
onPORTIK and WIENS

Sequences for any locus can be aligned using the Align.py module
with one of several popular aligners (mafft, muscle and clustal-o)
or with all aligners sequentially. For protein-coding loci, the macse
translation aligner is also available, which is capable of aligning cod-
ing sequences with respect to their translation while allowing for
multiple frameshifts or stop codons. To use this alignment method,
the Coding_Translation_Tests.py module can be used to identify the
correct reading frame of sequences, adjust them to the first codon
position and ensure completion of the final codon. Although macse
can be run on a single set of reliable sequences (e.g. only those
that passed translation), it has an additional feature allowing si-
multaneous alignment of a set of reliable sequences and a set of
unreliable sequences (e.g. those that failed translation), using dif-
ferent parameters. The Coding_Translation_Tests.py module can be
used to generate all the necessary input files to perform this type
of simultaneous alignment using macse (see online documentation).

The alignment methods implemented in SuperCRUNCH are not
intended to produce ultra-large alignments containing several thou-
sand sequences per gene. To create ultra-large alignments, we rec-
ommend using external alignment methods such as SATé-II (Liu et al.,
2012), PASTA (Mirarab et al., 2015) or UPP (Nguyen, Mirarab, Kumar,
& Warnow, 2015). We also recommend using UPP to create align-
ments for loci containing a mix of full-length sequences and short
sequence fragments, as these conditions are problematic for many
alignment methods (Nguyen et al., 2015).

3.8 | Post-alignment tasks

After multiple sequence alignment, there are several tasks that can
help prepare datasets for downstream analyses. One important
task involves relabelling sequences using the Fasta_Relabel_Seqs.py
module, such that sequence labels are composed of taxon labels,
accession numbers, voucher codes or some combination. The rela-
belling strategy will depend on the type of dataset being produced
(and whether concatenation is intended). Recommendations are
provided in the online documentation. Regardless, this step is es-
sential because full-length labels are incompatible with many down-
stream programs. Relabelled fasta files can be converted into other
commonly used formats (nexus, phylip) using the Fasta_Convert.py
module.

SuperCRUNCH offers two different approaches for automated
alignment trimming, although the overall value of trimming remains
debatable (Tan et al., 2015). The Trim_Alignments_Trimal.py module
uses several implementations of trimal (‘gap-threshold’, ‘gappyout’
and ‘noallgaps’) to trim alignments. The Trim_Alignments_Custom.py
module is based on the custom trimming routine in phyluce (Faircloth,
2016). This version allows edge trimming, row trimming or both.

Relabelled alignment files can be concatenated using the
Concatenation.py module. This module allows fasta or phylip input
and output formats. The user can also select the symbol for miss-
ing data (-, N, ?). It produces a log file containing the number of
loci for each terminal taxon and a data partitions file (containing

the corresponding base pairs for each locus in the alignment). The
Concatenation.py module can be used for any dataset in which la-
bels are consistent across loci, including species-level supermatrices
(with taxon labels) and ‘vouchered’ population-level datasets (with
taxon/voucher combination labels). See online documentation for
more details.

4  | DEMONSTR ATIONS AND
COMPARISONS

To demonstrate the full range of features available in SuperCRUNCH,
we constructed several types of datasets. These included small
population-level datasets (<300 sequences, <10 loci), a ‘vouchered’
phylogeographic dataset (~100 samples, 4 loci), traditional super-
matrices (~1,500 species, ~70 loci) and phylogenomic supermatrices
(~2,000 UCE loci, <20 samples). In addition, we demonstrate how
SuperCRUNCH can be used to add published outgroup sequences
to a supermatrix of locally generated sequences. Finally, we com-
pared the ability of SuperCRUNCH to construct species-level su-
permatrices relative to the program PyPHLAWD (Smith & Walker,
2018), using two test clades (Iguania and Dipsacales). In addition to
comparing supermatrix characteristics (taxa, loci and sequences), we
also compared the resulting phylogenies (including the number of
genera and families recovered as monophyletic). Details are given in
Supporting Information S1. All analyses are available as tutorials on
the SuperCRUNCH project page on the Open Science Framework
(https://osf.io/bpt94​/). Analyses were run on an iMac with a 4.2 GHz
quad-core Intel Core i7 with 32 GB RAM.

5  | RESULTS

Detailed results for all analyses are provided in Supporting
Information S1, and are briefly summarized here. SuperCRUNCH
produced a large supermatrix (~1,500 species, ~60 loci, ~13,000
sequences) in ~1.5 hr, but with more thorough settings ran up to
13 hr. This difference in runtimes is largely attributable to the align-
ment step, with MAFFT taking ~4 min and MACSE requiring 11 hr.
SuperCRUNCH successfully reconstructed a published phylogeo-
graphic dataset (<1 min) and a published phylogenomic supermatrix
(~25 min). It rapidly created new combinations of population-level
datasets from multiple published sources (<1 min). It also added
GenBank sequences for hundreds of outgroups to a local (unpub-
lished) supermatrix project (<4 min).

SuperCRUNCH outperformed PyPHLAWD in all supermatrix
comparisons, recovering more taxa and sequences in both test
clades. For example, given the same starting sequences for the
Iguania dataset, SuperCRUNCH found ~300 more taxa (1,359 vs.
1,069) and ~2,300 more sequences (12,676 vs. 10,397). PyPHLAWD
experienced a severe performance drop for loci containing ‘com-
plex’ records (those with multiple loci or non-overlapping regions),
and thereby lost 63% of the available mtDNA sequences (>2,000

https://osf.io/bpt94/

770  |    Methods in Ecology and Evolu
on PORTIK and WIENS

sequences discarded). SuperCRUNCH supermatrices also generated
higher quality phylogenies, recovering more genera as monophyletic
in all comparisons. Additional results for these comparisons are dis-
cussed in Supporting Information S1, and all analyses are available
on the Open Science Framework (https://osf.io/bpt94​/).

6  | DISCUSSION

SuperCRUNCH is a versatile bioinformatics toolkit that can be used
to create large phylogenetic datasets. It contains many novel features
that improve its functionality. Most importantly, SuperCRUNCH is
not restricted to GenBank sequence data. It can be used to process
unpublished sequences, and combinations of GenBank and unpub-
lished data. Many programs rely on GenBank database releases
to retrieve starting sequences and obtain metadata. In contrast,
SuperCRUNCH infers metadata directly from user-supplied starting
sequences, and constructs local databases to perform searches. This
design explicitly allows for the inclusion of unpublished sequence
data. SuperCRUNCH also includes a key step that allows for either
selecting one sequence per species, or all sequences, generating
either species-level supermatrices or population-level datasets.
Furthermore, filtering options are available for both (passing trans-
lation, minimum length), ensuring only high-quality sequences are
included in both types of datasets.

A population-level (phylogeographic) dataset includes multi-
ple sequences per species per locus. It is straightforward to collect
all sequences available for a particular gene for a given species.
However, there may be little overlap of sampling across loci. For
example, different individuals may have been sequenced for dif-
ferent loci in different studies. Identifying sequences derived from
the same sample can be difficult and requires integrating voucher
information. Incorporating additional sequences (published or un-
published) into phylogeographic datasets can be challenging, given
the difficulty of identifying and matching voucher information in
sequence records. SuperCRUNCH automates these tasks, creating
‘vouchered’ datasets. The ‘vouchered’ feature of SuperCRUNCH
only allows sequences with a voucher code to pass the filtering steps
used to create a population-level dataset. The final sequences are
relabelled using the voucher information (typically taxon name plus
voucher code), such that sequences derived from the same sample
share an identical label. Together, these features allow the rapid
reconstruction of published phylogeographic datasets, merging of
published and unpublished data to create new datasets, and con-
struction of datasets from locally generated sequences (especially
from sequence-capture experiments).

SuperCRUNCH initially identifies sequences using record labels,
moves the relevant sequences to locus-specific files and performs
similarity searches on reduced-sequence sets. Many other programs
attempt to cluster all starting sequences to produce putatively orthol-
ogous sequence clusters. This can be a useful approach, particularly
if the target loci are unknown beforehand. However, these ‘all-by-all’
clustering approaches do not allow target loci to be specified,

require additional steps to identify the content of sequence clusters
and can result in the inclusion of paralogous sequences. In certain
conditions, the clusters produced from a ‘complex’ record set can
be redundant, introducing biases into supermatrices (e.g. a single
locus repeated multiple times). SuperCRUNCH putatively assigns
sequences to a locus based on the presence of locus search terms
in the record label (similar to phyloGenerator). This strategy allows
specific loci to be targeted, establishes a clear identity for the se-
quences and reduces the chance of including paralogous sequences
(which should have a different gene label). In SuperCRUNCH, the
label-matching strategy is always paired with downstream similar-
ity searches (e.g. BLASTn). This design provides multiple filters to
help eliminate non-target sequences. Thus, SuperCRUNCH can ac-
curately target and build datasets composed of thousands of loci,
including UCEs and other sequence-capture loci. It is difficult to
reliably perform this task using ‘all-by-all’ clustering of starting se-
quences. Even the recently proposed ‘baited’ clustering approach
of PyPHLAWD, which requires a reference sequence set for each
locus, is prohibitive for large genomic datasets (e.g. ~5,000 UCE
loci). However, we acknowledge the success of the label-matching
strategy relies on defining appropriate search terms. Unanticipated
issues like gene name synonymies can exclude relevant sequences
during label-matching (Supporting Information S1). When orthol-
ogous sequences are labelled under synonymous gene names,
‘all-by-all’ clustering will recover more sequences if the full set of
gene names is not included in the label-matching search (Supporting
Information S1). This problem can be partially mitigated using gene
databases to identify synonymies. In SuperCRUNCH, multiple gene
abbreviations and gene descriptions can be included to search for a
given target locus. Given that searches for loci are conducted using
SQL, they are fast and can be executed using iteratively refined
search terms to optimize results.

SuperCRUNCH also offers improved methods for similarity
searches. These include the ability to specify BLASTn algorithms,
improved BLAST coordinate merging and sequence trimming, and
flexible choices for selecting reference sequences. Unless speci-
fied, the default algorithm used by nucleotide BLAST is megablast,
which is best for finding highly similar sequences in intraspecific
searches (e.g. population-level datasets). In contrast, discontig-
uous megablast performs substantially better for interspecific
searches (Camacho et al., 2009; Ma, Tromp, & Li, 2002), and it is
preferable for species-level supermatrices. In many cases, merging
the BLAST coordinates obtained from a query sequence is trivial
and results in a single continuous target region. However, mul-
tiple non-overlapping target regions may also occur for a query
sequence, and SuperCRUNCH offers several novel options to
handle these cases (Figure 3). Furthermore, SuperCRUNCH uses
the resulting coordinates to automatically trim sequences to the
target region, if necessary. This non-standard trimming action en-
sures that only sequence regions homologous to the reference-
sequence set are kept. SuperCRUNCH also offers two options for
designating reference sequences: reference sequences can be se-
lected automatically from the sequence set, or can be supplied by

https://osf.io/bpt94/

     |  771Methods in Ecology and Evolu
onPORTIK and WIENS

the user (Figure 2). Automatic selection of reference sequences is
appropriate for ‘simple’ sequence records (i.e. same gene regions),
and can efficiently perform similarity searches for thousands of
loci. User-supplied references are more appropriate for ‘complex’
sequence records (multiple loci or non-overlapping regions), or
whenever fine-control over the target region is desired. Although
this latter option requires gathering reference sequences manu-
ally, it is powerful and can be used to extract a single mtDNA gene
region from a record set containing a mix of whole mitochondrial
genomes, long multi-gene mtDNA sequences and shorter target
sequences.

Despite many improvements implemented in SuperCRUNCH, an
important and general issue is the accuracy of GenBank sequence
data. This issue can affect SuperCRUNCH and all other programs
that process GenBank data. For example, errors may arise through
incorrect uploading of data, misidentified specimens, contamina-
tion and other laboratory errors. Data errors can occur in record
labels, and include incorrect gene, taxon or voucher information.
With regards to contamination, we identified two human mtDNA
sequences labelled as lizards in our iguanian supermatrix analysis
(HM040901.1, KP899454.1; Supplemental File 1). The contamina-
tion filter in SuperCRUNCH can detect and eliminate some problems
of this kind, but it cannot readily identify cases of misidentified or
mislabelled sequences within the focal group. Misidentified speci-
mens are perhaps the most difficult problem to detect, particularly
at a shallow taxonomic scale (e.g. a specimen assigned to the wrong
species within the same genus or family). Although similarity filtering
can generally be used to correctly establish gene identities, parallel
approaches for identifying inaccurate taxon labelling within the focal
group are generally lacking. Overall, data accuracy is a general prob-
lem for the supermatrix approach regardless of the methods used to
process the data. Automatic identification of inaccurate sequence
records would be a useful goal for future studies of supermatrix
construction.

The initial motivation behind SuperCRUNCH was to increase
transparency and reproducibility across all steps in dataset con-
struction. We therefore encourage researchers running analyses
with SuperCRUNCH to publish the information needed to repro-
duce their results. This includes accession numbers for the start-
ing sequence set, the taxon list file, the locus search terms file and
the ancillary files and commands used to execute steps. We also
emphasize that SuperCRUNCH is highly modular and performing
a SuperCRUNCH analysis does not require running the full pipe-
line. As such, SuperCRUNCH modules can be incorporated into
any bioinformatics pipeline or used in conjunction with features
of other currently available programs. Alternative programs offer
important features that may serve different needs beyond those
available in SuperCRUNCH (e.g. SUPERSMART performs phyloge-
netic analyses on the supermatrices that it generates). Given the
rapid growth of sequence data on GenBank (NCBI, 2019) and the
changing landscape of phylogenomics, flexible and adaptable bioin-
formatics approaches are needed to continue mining and managing
phylogenetic datasets.

ACKNOWLEDG EMENTS
For financial support, we thank US National Science Foundation
Grant DEB 1655690. We thank early testers, including Itzue W.
Caviedes-Solis, Cristian Román-Palacios, Benjamin R. Karin, and
Pascal O. Title, and participants of the 2019 Trees in the Desert work-
shop (Tucson, AZ) for their beneficial feedback. We thank Rayna
C. Bell, the Bell lab group, the Associate Editor, and three anonymous
reviewers for helpful comments that greatly improved the manuscript.

AUTHORS' CONTRIBUTIONS
D.M.P. designed the methodology, wrote all code and analysed the
data; D.M.P. and J.J.W. wrote the manuscript.

DATA AVAIL ABILIT Y S TATEMENT
SuperCRUNCH is open-source and freely available at https://github.
com/dport​ik/Super​CRUNCH; Zenodo https://doi.org/10.5281/zenodo.
3715362 (Portik, 2020a). The complete materials (and instructions for
replicating our analyses), including input and output files from each
step, is available from the Open Science Framework (https://osf.io/
bpt94​/) (Portik, 2020b).

ORCID
Daniel M. Portik https://orcid.org/0000-0003-3518-7277
John J. Wiens https://orcid.org/0000-0003-4243-1127

R E FE R E N C E S
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990).

Basic local alignment search tool. Journal of Molecular Biology, 215,
403–410. https://doi.org/10.1016/S0022​-2836(05)80360​-2

AmphibiaWeb. (2019). Electronic database. Berkeley, CA: University of
California. Retrieved from https://amphi​biaweb.org

Antonelli, A., Hettling, H., Condamine, F. L., Vos, K., Nilsson, R. H.,
Sanderson, M. J., … Vos, R. A. (2017). Toward a self-updating plat-
form for estimating rates of speciation and migration, ages, and rela-
tionships of taxa. Systematic Biology, 66, 152–166.

Bennett, D. J., Hettling, H., Silvestro, D., Zizka, A., Bacon, C. D., Faurby,
S., … Antonelli, A. (2018). phylotaR: An automated pipeline for re-
trieving orthologous DNA sequences from GenBank in R. Life, 8, 20.
https://doi.org/10.3390/life8​020020

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer,
K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC
Bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421

Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl:
A tool for automated trimming in large-scale phylogenetic analyses.
Bioinformatics, 25, 1972–1973. https://doi.org/10.1093/bioin​forma​
tics/btp348

Chamberlain, S., & Szöcs, E. (2013). Taxize – Taxonomic search and re-
trieval in R. F1000Research, 2, 191. https://doi.org/10.12688​/f1000​
resea​rch.2-191.v1

Chamberlain, S., Szocs, E., Boettiger, C., Ram, K., Bartomeus, I.,
Baumgartner, J., … Oksanen, J. (2017). Taxize: Taxonomic informa-
tion from around the web. R package version 0.9.0. Retrieved from
https://cran.r-proje​ct.org/web/packa​ges/taxiz​e/index.html

de Queiroz, A., & Gatesy, J. (2007). The supermatrix approach to sys-
tematics. Trends in Ecology & Evolution, 22, 34–41. https://doi.
org/10.1016/j.tree.2006.10.002

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high ac-
curacy and high throughput. Nucleic Acids Research, 32, 1792–1797.
https://doi.org/10.1093/nar/gkh340

https://github.com/dportik/SuperCRUNCH
https://github.com/dportik/SuperCRUNCH
https://doi.org/10.5281/zenodo.3715362
https://doi.org/10.5281/zenodo.3715362
https://osf.io/bpt94/
https://osf.io/bpt94/
https://orcid.org/0000-0003-3518-7277
https://orcid.org/0000-0003-3518-7277
https://orcid.org/0000-0003-4243-1127
https://orcid.org/0000-0003-4243-1127
https://doi.org/10.1016/S0022-2836(05)80360-2
https://amphibiaweb.org
https://doi.org/10.3390/life8020020
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/bioinformatics/btp348
https://doi.org/10.1093/bioinformatics/btp348
https://doi.org/10.12688/f1000research.2-191.v1
https://doi.org/10.12688/f1000research.2-191.v1
https://cran.r-project.org/web/packages/taxize/index.html
https://doi.org/10.1016/j.tree.2006.10.002
https://doi.org/10.1016/j.tree.2006.10.002
https://doi.org/10.1093/nar/gkh340

772  |    Methods in Ecology and Evolu
on PORTIK and WIENS

Faircloth, B. C. (2016). PHYLUCE is a software package for the analysis
of conserved genomic loci. Bioinformatics, 32, 786–788. https://doi.
org/10.1093/bioin​forma​tics/btv646

Freyman, W. A. (2015). SUMAC: Constructing phylogenetic superma-
trices and assessing partially decisive taxon coverage. Evolutionary
Bioinformatics, 11, 263–266. https://doi.org/10.4137/EBO.S35384

Garrick, R. C., Bonatelli, I. A. S., Hyseni, C., Morales, A., Pelletier, T. A.,
Perez, M. F., … Carstens, B. C. (2015). The evolution of phylogeo-
graphic data sets. Molecular Ecology, 24, 1164–1171. https://doi.
org/10.1111/mec.13108

Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel
method for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Research, 30, 3059–3066. https://doi.
org/10.1093/nar/gkf436

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment
software version 7: Improvements in performance and usability.
Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/
molbe​v/mst010

Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and com-
paring large sets of protein or nucleotide sequences. Bioinformatics,
22, 1658–1659. https://doi.org/10.1093/bioin​forma​tics/btl158

Liu, K., Warnow, T. J., Holder, M. T., Nelesen, S. M., Yu, J., Stamatakis, A. P.,
& Linder, C. R. (2012). SATé-II: Very fast and accurate simultaneous
estimation of multiple sequence alignments and phylogenetic trees.
Systematic Biology, 61, 90–106. https://doi.org/10.1093/sysbi​o/syr095

Ma, B., Tromp, J., & Li, M. (2002). PatternHunter: Faster and more sen-
sitive homology search. Bioinformatics, 18, 440–445. https://doi.
org/10.1093/bioin​forma​tics/18.3.440

McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield,
R. T. (2013). Applications of next-generation sequencing to phyloge-
ography and phylogenetics. Molecular Phylogenetics and Evolution, 66,
526–538. https://doi.org/10.1016/j.ympev.2011.12.007

Mirarab, S., Nguyen, N., Guo, S., Wang, L.-S., Kim, J., & Warnow, T.
(2015). PASTA: Ultra-large multiple sequence alignment for nucleo-
tide and amino-acid sequences. Journal of Computational Biology, 22,
377–386. https://doi.org/10.1089/cmb.2014.0156

NCBI. (2019). GenBank and WGS statistics. Bethesda, MD: National Library
of Medicine (US), National Center for Biotechnology Information.
Retrieved from https://www.ncbi.nlm.nih.gov/genba​nk/stati​stics​/

Nguyen, N., Mirarab, S., Kumar, K., & Warnow, T. (2015). Ultra-large
alignments using phylogeny-aware profiles. Genome Biology, 16, 124.
https://doi.org/10.1186/s1305​9-015-0688-z

Patterson, D., Mozzherin, D., Shorthouse, D., & Thessen, A. (2016). Challenges
with using names to link digital biodiversity information. Biodiversity
Data Journal, 4, e8080. https://doi.org/10.3897/BDJ.4.e8080

Pearse, W. D., & Purvis, A. (2013). phyloGenerator: An automated
phylogeny generation tool for ecologists. Methods in Ecology and
Evolution, 4, 692–698. https://doi.org/10.1111/2041-210X.12055

Portik, D. (2020a). dportik/SuperCRUNCH: Release for Zenodo archiving
(Version V1.2.1). Zenodo.https://doi.org/10.5281/zenodo.3715363

Portik, D. (2020b). SuperCRUNCH. Retrieved from https://osf.io/bpt94.
Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N., & Delsuc, F.

(2018). MACSE v2: Toolkit for the alignment of coding sequences
accounting for frameshifts and stop codons. Molecular Biology and
Evolution, 35, 2582–2584. https://doi.org/10.1093/molbe​v/msy159

Sanderson, M. J., Boss, D., Chen, D., Cranston, K. A., & Wehe, A. (2008).
The PhyLoTA browser: Processing GenBank for molecular phy-
logenetics research. Systematic Biology, 57, 335–346. https://doi.
org/10.1080/10635​15080​2158688

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., …
Higgins, D. G. (2011). Fast, scalable generation of high-quality pro-
tein multiple sequence alignments using Clustal Omega. Molecular
Systems Biology, 7, 539. https://doi.org/10.1038/msb.2011.75

Smith, S. A., Beaulieu, J. M., & Donoghue, M. J. (2009). Mega-phylogeny
approach for comparative biology: An alternative to supertree and
supermatrix approaches. BMC Evolutionary Biology, 9, 37. https://doi.
org/10.1186/1471-2148-9-37

Smith, S. A., & Walker, J. F. (2018). PyPHLAWD: A python tool for phy-
logenetic dataset construction. Methods in Ecology and Evolution, 10,
104–108. https://doi.org/10.1111/2041-210x.13096

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich,
S., … Lancet, D. (2016). The GeneCards suite: From gene data min-
ing to disease genome sequence analyses. Current Protocols in
Bioinformatics, 54, 1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5

Tan, G., Muffato, M., Ledergerber, C., Herrero, J., Goldman, N., Gil, M.,
& Dessimoz, C. (2015). Current methods for automated filtering of
multiple sequence alignments frequently worsen single-gene phy-
logenetic inference. Systematic Biology, 64, 778–791. https://doi.
org/10.1093/sysbi​o/syv033

Uetz, P., Freed, P., & Hošek, J. (2018). The Reptile Database. Retrieved
from http://www.repti​le-datab​ase.org

SUPPORTING INFORMATION
Additional supporting information may be found online in the
Supporting Information section.

How to cite this article: Portik DM, Wiens JJ. SuperCRUNCH:
A bioinformatics toolkit for creating and manipulating
supermatrices and other large phylogenetic datasets. Methods
Ecol Evol. 2020;11:763–772. https://doi.org/10.1111/2041-
210X.13392

https://doi.org/10.1093/bioinformatics/btv646
https://doi.org/10.1093/bioinformatics/btv646
https://doi.org/10.4137/EBO.S35384
https://doi.org/10.1111/mec.13108
https://doi.org/10.1111/mec.13108
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/sysbio/syr095
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1016/j.ympev.2011.12.007
https://doi.org/10.1089/cmb.2014.0156
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://doi.org/10.1186/s13059-015-0688-z
https://doi.org/10.3897/BDJ.4.e8080
https://doi.org/10.1111/2041-210X.12055
https://doi.org/10.5281/zenodo.3715363
https://osf.io/bpt94
https://doi.org/10.1093/molbev/msy159
https://doi.org/10.1080/10635150802158688
https://doi.org/10.1080/10635150802158688
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1186/1471-2148-9-37
https://doi.org/10.1186/1471-2148-9-37
https://doi.org/10.1111/2041-210x.13096
https://doi.org/10.1002/cpbi.5
https://doi.org/10.1093/sysbio/syv033
https://doi.org/10.1093/sysbio/syv033
http://www.reptile-database.org
https://doi.org/10.1111/2041-210X.13392
https://doi.org/10.1111/2041-210X.13392

