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abstract: Sexually selected traits have long been thought to drive
diversification, but support for this hypothesis has been persistently
controversial. In fishes, sexually dimorphic coloration is associated
with assortative mating and speciation among closely related species,
as shown in classic studies. However, it is unclear whether these re-
sults can generalize to explain diversity patterns across ray-finned
fishes, which contain the majority of vertebrate species and 96% of
fishes. Here, we use phylogenetic approaches to test for an associa-
tion between sexual dichromatism and diversification rates (speciation
minus extinction) in ray-finned fishes. We assembled dichromatism
data for 10,898 species, a data set of unprecedented size. We found
no difference in diversification rates between monochromatic and di-
chromatic species when including all ray-finned fishes. However, at lower
phylogenetic scales (within orders and families), some intermediate-
sized clades did show an effect of dichromatism on diversification. Sur-
prisingly, dichromatism could significantly increase or decrease diver-
sification rates. Moreover, we found no effect in many of the clades
initially used to link dichromatism to speciation in fishes (e.g., cichlids)
or an effect only at shallow scales (within subclades). Overall, we show
how the effects of dichromatismon diversification are highly variable in
direction and restricted to certain clades and phylogenetic scales.

Keywords: diversification, fishes, sexual selection, speciation, color,
phylogenetic scale.

Introduction

A major goal in evolutionary biology is to explain why
some clades have more species than others (Wiens 2017).
Fundamentally, new species are added to a clade through
speciation and removed through extinction. Therefore, an
important explanation for variation in richness among clades
is that they differ in their net diversification rates (speciation
minus extinction rates).
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Diversification rates can be influenced by organismal
traits that affect the probability of speciation or extinction.
Darwin (1871) first observed that many of the most obvi-
ous differences between closely related species are in traits
involved in courtship (Ritchie 2007), including the bright
colors in males of many species (fig. 1). This observation led
to the influential hypothesis that sexually selected traits play
a role in the origin of new species (Boughman 2014). Clas-
sic papers proposed that sexual selection drives speciation
through assortative mating (Lande 1981; West-Eberhard
1983). However, several additional mechanisms could also
help explain how sexual selection could increase net diver-
sification rates (Tsuji and Fukami 2020). For example, sex-
ual selection may drive speciation through postzygotic iso-
lation (Irwin 2020) or by facilitating ecological divergence
(Albert et al. 2008). Sexual selection can also reduce extinc-
tion by helping populations adapt to changing environments
(Lorch et al. 2003) or purge mutation loads (Lumley et al.
2015).
Conversely, sexual selection can also decrease net di-

versification rates. Sexual selection can inhibit speciation
through negative assortative mating (Servedio and Burger
2014) or when sexes compete for resources (Bolnick and
Doebeli 2003). If sexually dimorphic traits increase indi-
vidual mortality, then sexual selection can drive species to
extinction (Promislow et al. 1992; Martins et al. 2018). In
sum, sexual selection may increase or decrease net diver-
sification rates of clades through several mechanisms that
act on speciation or extinction.
Comparative studies testing for an association between

sexually selected traits and diversification rates have found
mixed results. Sexual dichromatism was first found to be
positively related to species richness and diversification on
the basis of comparisons of sister clades of passerine birds
(Barraclough et al. 1995). However, subsequent studies in
birds found no such relationship (Morrow et al. 2003; Huang
and Rabosky 2014). Studies in other animal clades are sim-
ilarly divided on whether sexual selection increases, decreases,
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or has no effect on diversification (Kraaijeveld et al. 2011;
Tsuji and Fukami 2020).
One possible explanation for these conflicting results

is the different taxonomic scales among studies. A meta-
analysis (Kraaijeveld et al. 2011) posited that studies at
smaller scales (e.g., studies within bird genera) were more
likely to recover a positive effect of sexual selection on di-
versification than studies of older clades (bird families).
These authors suggested that this occurs because extinction
prunes many of the species gained by speciation through
sexual selection, so these species are not observed. A study
that attempted to parse out the effects of taxonomic scale
found no relationship between sexual dichromatism and
speciation rates across all birds and none within most
families (Huang and Rabosky 2014). Furthermore, a sub-
sequent study in birds compared diversification rates among
recently diverged sister species pairs and still found no re-
lationship between dichromatism and speciation rates (Coo-
ney et al. 2017). Thus, empirical evidence for this scaling
hypothesis remains limited. However, it has been tested
only in birds so far.
Despite uncertainty in other groups, current evidence for

a positive effect of sexual dichromatism on speciation in
ray-finned fishes is compelling (Kraaijeveld et al. 2011).
With ∼31,000 species, ray-finned fishes (Actinopterygii)
contain ∼96% of all fish species and ∼50% of all verte-
brates (Helfman et al. 2009). There is strong evidence that
species-specific, sexually dichromatic colors are under sex-
ual selection in fishes (Kodric-Brown 1990, 1998). In ad-
dition, male colors have been linked to assortative mating
and/or reproductive isolation in several clades, including
classic studies in cichlids (Seehausen et al. 1997, 2008; Elmer
et al. 2009), darters (Mendelson 2003; Martin and Men-
delson 2014), guppies (Houde and Endler 1990), and stickle-
backs (Boughman2001). Furthermore, sexual dichromatism
has been linked with diversification over macroevolution-
ary timescales in cichlids (Wagner et al. 2012; McGee et al.
2020), parrotfishes (Kazancıoğlu et al. 2009; Choat et al.
2012), poeciliids (guppies and allies; Furness et al. 2019), and
sunfishes (Smith et al. 2015). Most notably, sexual dichro-
matism helps explain why African cichlids have the fastest
diversification rates among all animals (McGee et al. 2020).
If the factors that promote reproductive isolation among
populations also explain diversification rates over deeper
timescales, then sexual dichromatism could help explain the
striking differences in species diversity among ray-finned
fish clades. For example, actinopterygian orders range from
one to 14,000 species (table A1; tables A1–A28 are avail-
able online; Rabosky et al. 2018; Froese and Pauly 2019).
Here, we investigate the effect of sexual dichromatism

on diversification rates across ray-finned fishes. This goal
was shared by two previous studies that used sister clade
comparisons to address diversification (Mesnick 1996; Mank
2007). Both studies found that groups with a greater prev-
alence of sexual dimorphism (in color and other features)
were generally more species rich, which is consistent with
faster diversification. However, the sister clade approach
necessarily limits comparisons to only those groups that
vary in the presence of dimorphism. Collectively, these two
studies included 30.9% of ray-finned fish orders and 11.6%
of families (Froese and Pauly 2019). This limitation may
bias the range of diversification rates seen among mono-
morphic groups (e.g., ascertainment bias; Beaulieu and
O’Meara 2018), potentially leading to incorrect inferences
about the influence of sexual selection on diversification
overall.
We improved on previous analyses of ray-finned fishes

in three ways. First, we collected data on sexual dichroma-
tism for 10,898 species, including 35% of described species,
89% of families, and 100% of orders (following taxonomy
of Rabosky et al. 2018). Our data set is the largest on sex-
ual dichromatism compiled for any animal group. Second,
we used methods that separately estimate rates of speci-
ation, extinction, and net diversification rather than using
species richness as a proxy for diversification. Third, we
performed analyses at three scales: across all ray-finned
fishes, within clades in which sexual dichromatism evolved,
and within smaller subsets of these clades. We also per-
form analyses that compare rank-free clades for a range
of clade ages. By sampling broadly across taxa and scales,
we can identify the scales at which sexual dichromatism
drives diversification, if at all.
Material and Methods

Literature Search

We conducted an extensive literature search on the pres-
ence or absence of sexual dichromatism in actinoptery-
gian fishes. We targeted information for those species that
were represented in the phylogeny used (Rabosky et al.
2018; text A1; table A1; texts A1–A5 are available online).
Our search was conducted from November 1, 2017, to
June 1, 2019. We used the package rfishbase v.2.99 (Boet-
tiger et al. 2012) to reconcile synonyms across literature
sources. We focused on color differences over other forms
of sexual dimorphism because these differences are (1) rel-
atively straightforward to identify, (2) often reported when
they exist (see below), and (3) linked to assortative mating,
reproductive isolation, and/or diversification in many pre-
vious studies (see above).
Sexual dichromatism was defined here as any reported

difference in color between the sexes at any stage in the
adult life cycle, including differences in color pattern or
intensity. This definition includes permanent and temporary
dichromatism (Kodric-Brown 1998) as well as color changes
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associated with sex change. This definition is agnostic re-
garding the degree of difference between the sexes, the
mechanistic basis for color (e.g., melanic, carotenoid), and
whether males or females are more colorful. We chose this
definition for two reasons. First, our definition must apply
across fishes even to clades that show only subtle dichro-
matism. Second, we do not always know which cases of di-
chromatism are unimportant for mate choice, as most fishes
have not been studied behaviorally (Amundsen 2003).
We coded sexual dichromatism as present in a spe-

cies if at least one source described sex differences in color
(table A2). There were two ways that species could be
coded as monochromatic (table A2). The first way was if
a source stated that the species (or higher taxon to which
it belonged) was monochromatic. However, we anticipated
that many sources were unlikely to explicitly state that a
species was monomorphic if the authors’ goal was species
identification (as for field guides). Therefore, we also coded
species as monochromatic if the species’ color in life was
described but no sex differences were mentioned. The ben-
efit of including these species is the increased power to de-
tect variation in diversification rates (Davis et al. 2013). Our
literature search supported our supposition that dichro-
matism is likely to be reported if it exists, but authors ex-
plicitly report monochromatism less often (text A2; table A3).
Nevertheless, we performed analyses without these species
and obtained similar results (see below; table A4).
Phylogenetic Framework

We used a time-calibrated maximum likelihood phylog-
eny (Rabosky et al. 2018) of ray-finned fishes including
11,638 species with DNA sequence data (36.9% of all de-
scribed species). We included only species with sequence
data because semirandom grafting of unsampled species
is inappropriate for analyzing trait evolution at the species
level (Rabosky 2015). We removed duplicate and uniden-
tified species as well as species for which we could not find
information on sexual dichromatism from the literature
(see “Results”). Species sampling among orders in this re-
duced phylogeny (10,898 species) was correlated with their
described richness (n p 68 orders; r p 0:97; P ! :001;
text A1).
We initially performed analyses at three phylogenetic

scales: (1) across all ray-finned fishes, (2) within each of
18 clades individually, and (3) within eight selected sub-
clades of the six largest of those 18 clades. Details for all
18 clades and eight subclades are given in table A5. To de-
limit clades in all cases, we targeted monophyletic higher
taxa (families and orders) in which both monochromatism
and dichromatism were present in ≥10% of the species.
State-dependent speciation and extinction (SSE) methods
can give problematic results when one state is rarer than
10% (Davis et al. 2013). To maximize species sampling,
we used orders instead of families in cases where we could
include additional species while maintaining this propor-
tion. These 18 clades contained 93–1,098 species in the
tree (mean p 349:2, SD p 265:4). The six largest clades
(Characiformes, Cichlidae, Cyprinidae, Cyprinodontiformes,
Gobiiformes, and Scorpaeniformes) included eight families
and subfamilies that were also suitable for analyses under
these criteria. These eight subclades included 111–438 spe-
cies (mean p 273:8, SD p 123:8).
To assess how phylogenetic uncertainty may affect our

results, we repeated hidden state speciation and extinction
(HiSSE) analyses (see below) on three clades with alterna-
tive published phylogenies: Cichlidae (Burress and Tan
2017), Labridae (Siqueira et al. 2016), and Poeciliidae (Rez-
nick et al. 2017). These clades were particularly important
because of previous studies linking dichromatism and di-
versification within them (e.g., Kazancıoğlu et al. 2009; Wag-
ner et al. 2012; Furness et al. 2019). Furthermore, species
sampling in these trees was similar to that in the main tree
(Rabosky et al. 2018). Thus, any differences in results should
be related to the trees (topology and divergence times) and
not sampling. Details of these alternative trees are in text A3
and table A6.
We also used a rank-free approach to select clades (Poe

et al. 2020). To test whether temporal scale influences our
results, we sliced the phylogeny at different time points.
We collected all subtrees produced by slicing the tree at
100, 80, 60, and 40 million years (myr) ago, respectively.
Slicing was performed using the chainsaw2 function in
BioGeoBEARS version 1.1.2 (Matzke 2014). We then fil-
tered the resulting clades to find those suitable for SSE anal-
yses (1100 species, both states present in ≥10% of species).
This yielded 12 clades ∼100 myr in age, 16 at ∼80 myr, 15
at ∼60myr, and six at ∼40myr, for a total of 49 clades. For
a given slice, most clades were subsets of those from older
slices. Details of rank-free clades are in tables A7–A10.
Diversification Analyses

We primarily tested for associations between sexual di-
chromatism and diversification using the HiSSE frame-
work implemented in the R package hisse version 1.9.0
(Beaulieu and O’Meara 2016). The HiSSE framework is
an advance over previous SSE methods because it can de-
tect rate shifts that are not caused by the trait of interest.
It can thereby reduce false associations between diversifi-
cation rates and the focal trait (Rabosky and Goldberg
2015). We performed identical HiSSE analyses on each of
the 27 clades separately (all ray-finned fishes, 18 fish clades,
and eight subclades) and the 49 clades from the rank-free ap-
proach. We compared the fit of 14 dichromatism-dependent
models of diversification (in which dichromatism accounts
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for some or all of the diversification rate heterogeneity in
the tree) to nine dichromatism-independent models (in
which dichromatism is unrelated to diversification rate het-
erogeneity). We compared the fit of dichromatism-dependent
models todichromatism-independentmodels of similar com-
plexity (Beaulieu and O’Meara 2016; Harrington and Reeder
2017). Details of the 23models are given in table A11. To cor-
rect for incomplete species sampling, we calculated the pro-
portion of unsampled species for each clade using rfishbase
(Boettiger et al. 2012), assuming that this proportion was
identical between monochromatic and dichromatic species.
We did this because the total number of monochromatic and
dichromatic species among ray-finned fishes is unknown.
However, supplemental analyses suggest that monochro-
matic and dichromatic species have similar chances of be-
ing sampled in the phylogeny (text A1). Relative fit of models
was determined using Akaike weights (AICw; Burnham and
Anderson 2002).
When a dichromatism-dependent model of diversifi-

cation had the best fit, a range of relationships between
dichromatism and diversification were possible. Dichro-
matism could have positive or negative effects on speci-
ation, extinction, and diversification. To characterize this
relationship for each clade, we obtained model-averaged
rates associated with each species, with the contribution of
each model toward the mean proportional to that model’s
AICw (Caetano et al. 2018). Only models with ≥5% of the
AICwof themodel set were included inmodel averaging to
avoid undue influence of poorly supportedmodels (Caetano
et al. 2018). Next, we tested whether model-averaged speci-
ation, extinction, and net diversification rates were signifi-
cantly different between monochromatic and dichromatic
species, using phylogenetic ANOVA (Garland et al. 1993)
implemented in phytools version 0.6-44 (Revell 2012). Note
that in some cases, a dichromatism-independent model re-
ceived 100% of the AICw but mean rates were still signifi-
cantly different between monochromatic and dichromatic
species using phylogenetic ANOVA. We interpret this re-
sult as indicating that other (hidden) factors are ultimately
responsible for rate shifts (Beaulieu and O’Meara 2016). A
recent study suggested that it can be mathematically diffi-
cult to separate the contributions of speciation and extinc-
tion to changes in diversification through time (Louca and
Pennell 2020), but it is unclear whether this problem ap-
plies to SSE models because they are more complex than
birth-death models.
At the scale of all ray-finned fishes, we also tested the

robustness of our HiSSE results using Bayesian analysis of
macroevolutionary mixtures (BAMM). BAMM (Rabosky
2014; Rabosky et al. 2014) is a Bayesian framework for de-
tecting shifts in diversification. There are two relevant dif-
ferences between this approach and HiSSE. First, BAMM
estimates diversification rate shifts independently from trait
evolution. Second, HiSSE is limited by the number of rate
shifts (i.e., hidden states) it can model, while BAMM has
no limit on potential rate shifts. We acknowledge that
BAMMmay still be relatively insensitive to rate variation,
especially for small clades (Moore et al. 2016; Rabosky et al.
2017; Meyer and Wiens 2018). We used structured rate
permutations on phylogenies (STRAPP; Rabosky andHuang
2016), which uses a permutation test to detect an association
with a binary trait and diversification rate shifts estimated
by BAMM. This approach is best applied only to very large
phylogenies because many rate shifts are needed to gain
enough power to detect associations with a trait (Rabosky
and Huang 2016).
We processed the BAMM output performed by Rab-

osky et al. (2018) using BAMMtools version 2.1.6 (Rab-
osky et al. 2014). We generated a null distribution of
the Mann-Whitney U-test statistic by performing 1,000
permutations of the BAMM rate shifts associated with
each species, using the traitDependentBAMM function in
BAMMtools. This null distribution was used to test for as-
sociations between dichromatism and rates of speciation,
extinction, and diversification. We used alternative rates
estimated using a time-constant and time-variable BAMM
model. We also performed tests using only species with di-
rect information about the presence or absence of dichro-
matism (n p 8, 613 species).
Alternative Perspectives on Color

We tested the sensitivity of our results to (1) treating sex-
ual dichromatism as a binary variable and (2) using human
perceptions of color. These analyses are summarized here,
with details in texts A4 and A5.
Darwin (1871) originally considered the degree of di-

morphism to be a proxy for the strength of sexual selection.
Therefore, even if sex differences are present, diversification
rates may be elevated only when dichromatism is dramatic.
To test this possibility, we used color data from the literature
for two well-studied clades: Etheostomatinae (darters; Bossu
and Near 2015) and Labridae (wrasses and parrotfishes;
Hodge et al. 2020). These studies each quantified sexual di-
chromatism on a continuous scale using photographs of
males and females of each species.We tested for a relation-
ship between the degree of dichromatism and tip-associated
speciation rates from BAMM (calculated by Rabosky et al.
2018) using phylogenetic generalized least squares (Freck-
leton et al. 2002). This relationship was not significant in
either clade (table A12). High speciation rates were found
along the continuum frommonochromatic to extremely di-
chromatic species (fig. A1; figs. A1–A6 are available online).
These results were consistent with those using binary state
models for these two clades (see “Results”; text A4).



Sexual Dichromatism and Diversification 237
Like many previous studies (e.g., Wagner et al. 2012),
our data set was based on human perceptions of fish color.
Many birds that appear sexually monochromatic to humans
are actually dichromatic in the ultraviolet (UV) spectrum
(Eaton 2005). We are not aware of any studies in fishes that
found that a species that was sexually dichromatic in the
UV spectrum appeared monochromatic to humans, as is
the case for birds (Eaton 2005; but see Siebeck et al. 2010
on UV patterns and species discrimination in fishes). Fur-
thermore, many fishes that are capable of UV vision lack
body coloration visible in UV (Siebeck and Marshall 2001).
Fishes may use UV vision in many contexts, such as feed-
ing (Losey et al. 1999). Thus, UV vision in fishes need not
be relevant to sexual selection.
Nevertheless, we assessed how our results would be af-

fected by relying on human color perception to code the
presence of dichromatism (text A5). We used a compen-
dium of lmax (peak sensitivity wavelength of photoreceptors)
estimates across 277 species of ray-finned fishes (Schweikert
et al. 2018) to identify fishes with UV-sensitive vision. First,
we found that fishes with UV vision were significantly more
likely to appear sexually dichromatic to humans than other
fishes (x2 test: x2 p 5:97, P p :0145, n p 237 species).
This suggests that fishes with the greatest potential to see
colors in UV are also likely to have dichromatic coloration
detectable by humans. Second, we tested whether specia-
tion rates were significantly different among monochro-
matic and dichromatic fishes, assuming an extreme case
in which all fishes with UV vision are sexually dichromatic
even if they were assigned as monochromatic based on hu-
man color. We found that any differences in speciation rates
associated with dichromatism were driven by biased sam-
pling of dichromatic cichlids in the vision data set. Once
cichlids were removed, there were no differences in specia-
tion rates between monochromatic and dichromatic species,
regardless of whether we recoded species with UV vision as
dichromatic (table A13). Overall, we found no evidence that
our results across fishes would be overturned by the fail-
ure to observe sexual dichromatism outside the human vis-
ible spectrum.

Results

Prevalence of Sexual Dichromatism

We obtained information from the literature on the pres-
ence and absence of sexual dichromatism for 10,898 spe-
cies of ray-finned fishes, including most (93.6%) of the spe-
cies sampled in the phylogeny (Rabosky et al. 2018) and
34.6% of all described species. Data were obtained from
196 sources (data set S1, deposited in the Dryad Digital
Repository [https://doi.org/10.5061/dryad.hqbzkh1bs; Miller
et al. 2021]), including primary literature, online databases,
field guides, taxonomic compilations, aquarist resources,
and expert opinion (for two families with limited informa-
tion). There was a mean of 2.5 sources associated with each
species (SD51:7, range p 1–15).
Sexual dichromatism was reported in 3,154 sampled spe-

cies (28.9% of species in our data set). This proportion is
not significantly different from an earlier estimate of 27.0%
(Mank 2007; x2 test: x2 p 1:45, P p :23; text A1). This
implies that the prevalence of sexual dichromatism would
not change greatly with additional sampling. There was no
correlation between the proportion of species sampled in
the phylogeny for each order and the proportion of dichro-
matic species in that order (n p 68 orders; r p 0:17;
P p :16; text A1). Thus, sexual dichromatism did not ap-
pear to influence species sampling in this phylogeny.
Diversification Rates across All Ray-Finned Fishes

Our results show that sexual dichromatism does not sig-
nificantly impact diversification rates when all ray-finned
fishes are included (fig. 1). Using HiSSE, a dichromatism-
independent model received 100% of the AICw (table A14).
Using phylogenetic ANOVA on model-averaged rates (ta-
ble A15), we found no significant difference in speciation
rates between monochromatic and dichromatic species
(mean lmonochromatic p 0:197 lineages per myr [0.058–0.227;
first and third quantile]; ldichromatic p 0:241 [0.070–0.310];
Pp :491).We also found no significant difference in extinc-
tion rates (mmonochromatic p 0:123 [0.007–0.128]; mdichromatic p
0:159 [0.012–0.205]; P p :497) or net diversification
rates (rmonochromaticp 0:074 [0.051–0.097]; rdichromaticp 0:081
[0.058–0.105]; P p :273). Although SSE methods have the
power to detect trait-dependent diversification in clades
with only a few hundred species (Davis et al. 2013), we
did not find such an association with 10,898 species.
Using STRAPP, we also found no significant differences

between monochromatic and dichromatic species in rates
of speciation (P p :53 under a BAMM time-variable model,
n p 10, 898 species), extinction (P p :61), or net diver-
sification (P p :53), regardless of the BAMM model used
(table A4). We also performed STRAPP analyses that ex-
cluded the 2,285 species that were coded as monochromatic
based solely on color descriptions that did not mention dif-
ferences between the sexes. Again, we found no differences
in rates (table A4).
Patterns within Individual Clades

We first fit HiSSE models on 18 clades individually. For
illustrative purposes, we compared the summed AICw of
14 dichromatism-dependent models with the summed AICw
for nine dichromatism-independent models (table A11).
Scores of individualmodels are given in table A14, andmodel-
averaged rates are given in tableA15.Dichromatism-dependent

https://doi.org/10.5061/dryad.hqbzkh1bs


238 The American Naturalist
models of diversification received 180% of the AICw in
only four clades (figs. 2, A2; table A14). In Tetraodonti-
formes (pufferfishes and relatives), dichromatic species had
higher speciation rates but also higher extinction rates, such
that monochromatic species had higher net diversification
rates. Centrarchiformes (sunfishes and relatives) showed no
significant difference in speciation or diversification rates.
However, extinction rates were significantly lower in dichro-
matic species. Anabantiformes (bettas and relatives) and
Blenniiformes (blennies) had significantly positive relation-
ships between dichromatism and net diversification. How-
ever, in Anabantiformes, the difference in diversification
rates was again due to lower extinction rates in dichromatic
species, not faster speciation rates.
Among the remaining 14 clades, seven showed no ev-

idence for an effect of dichromatism on diversification
(figs. 2, A3). The other seven clades had only equivocal ev-
idence for a positive relationship (three clades; fig. A4) or
a negative relationship (four clades; fig. A5). These seven
equivocal cases occurred when dichromatism-dependent and
dichromatism-independent models received similar support
(e.g., Gobiiformes and Percidae; AICw of dichromatism-
independentmodels p 40% and 58%, respectively) or when
a dichromatism-independent model had strong fit but mean
rates were still significantly different using phylogenetic
ANOVA (table A15). This latter pattern implies that di-
versification is associated with other (hidden) factors that
partially overlap with dichromatism (Beaulieu and O’Meara
2016).
Surprisingly, the 14 clades in which dichromatism-

dependentmodels received equivocal or no support encom-
passedmany classic model systems that linked sexual dichro-
matism to reproductive isolation and/or speciation. These
clades included Cichlidae (sum of AICw of dichromatism-
independentmodels p 100%; n p 720 species), Cyprino-
dontiformes (guppies and relatives; AICw p 100%; n p
572), Labridae (wrasses and parrotfishes; AICw p 100%;
n p 337), and Percidae (darters; AICw p 58%; n p 218).
We found similar results when using alternative phylogenies
of Cichlidae and Labridae (tables A16, A17).
Patterns at Shallower Phylogenetic Scales

Among the 18 clades, the six largest were Characiformes,
Cichlidae, Cyprinidae, Cyprinodontiformes, Gobiiformes,
and Scorpaeniformes. Dichromatism-independent models
received 100% of the AICw in five of these six clades (fig. 2;
table A14). However, support for dichromatism-dependent
models strongly increased in four of eight subclades, relative
to the larger clade to which they belonged (to 39% of the
AICw in Characidae, 65% in Poeciliidae, 86% in Leucis-
cinae, and 100% in Gobiidae; fig. 3; table A18). The rela-
tionships between dichromatism and diversification were
variable among these groups. Characidae (tetras) and Leu-
ciscinae (minnows) had higher net diversification rates in
monochromatic species (table A19; fig. A6). Dichromatic
gobies (Gobiidae) had higher speciation rates but also higher
extinction rates, leaving no significant difference in net di-
versification rates. In Poeciliidae, higher net diversifica-
tion rates associated with dichromatism were due to lower
extinction rates, not higher speciation rates (table A19; fig. A6).
We also recovered a positive effect of dichromatism on net
diversification using an alternative phylogeny of Poeciliidae
(Reznick et al. 2017). This effect was due to both speciation
and extinction rates using this tree (tables A16, A17). We
found no evidence for higher diversification rates associ-
ated with dichromatism in the subfamilies Pseudocrenila
brinae (African cichlids) and Cichlinae (Neotropical cichlids;
fig. 3; table A18; fig. A6), mirroring the results for Cichlidae
as a whole (fig. 2). This surprising result is robust to use
of an alternative cichlid phylogeny (Burress and Tan 2017;
tables A16, A17).
Rank-Free Time Slice Approach

HiSSE results among 49 clades selected using time slices
(fig. 4A; tables A7–A10) showed patterns similar to results
from ranked clades. Only one of the 12 oldest clades (100-myr
slice) had strong support for any effect of sexual dichro-
matism on diversification (fig. 4B; table A20). In this clade
(loaches), the summed AICw of dichromatism-dependent
models was 85%, and dichromatism had a negative effect
on net diversification (table A21). The corresponding weight
for the remaining 11 clades ranged from 0% to 41% and
was !5% for eight clades (table A20).
Support for dichromatism-dependent models was higher

among the clades from the 80-, 60-, or 40-myr time slices
(fig. 4B; tables A22–A27). Most of these clades were nested
within the 12 oldest clades from the 100-myr slice (tables A7–
A10). Among these 12 clades, eight contained subclades
with stronger support for dichromatism-dependent models
than the clade as a whole (fig. 4B). For example, cichlids
finally showed the expected support for dichromatism-
dependent diversification at the youngest level. Subclades
within the African and Neotropical cichlid lineages from
the 40-myr slice each had strong support for dichromatism-
dependent models (100% and 91% of the AICw, re-
spectively; table A26), with a positive effect of dichroma-
tism on net diversification (fig. 4B; table A27). Among
all clades with strong support for dichromatism-dependent
models, there was no common tendency for dichroma-
tism to increase or decrease speciation, extinction, or net
diversification.
Support for dichromatism-dependent HiSSE models

did not linearly increase with decreasing crown-group age
(fig. 4C). The 100-myr subset of clades collectively had poor
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support for an effect of dichromatism, but there was similar
support among the 40-, 60-, and 80-myr subsets. There was
no correlation between model support and the proportion
of species sampled or the proportion of species with sexual
dichromatism (table A28). Instead, model support was neg-
atively correlated with clade size (fig. 4C). This pattern ap-
peared when we pooled all 49 clades for comparison (clade
size: Spearman’s r p 20:680, P ! :001; clade age: r p
20:264, P p :073) and also within the 100-, 80-, and
60-myr subsets individually (table A28).
Among all rank-free clades, the largest clade with sup-

port for dichromatism-dependent diversification contained
1,107 described species (summed AICw p 72%). None
of the 13 clades larger than this (1,442–4,139 species)
had a summed AICw 15% for dichromatism-dependent
models. Eleven clades had strong support for dichromatism-
dependent models (AICw 180%). These clades ranged from
39.5 to 93.3 myr old (meanp 62.5) and had 106–414 sam-
pled tips (mean p 202:3) and 144–1,041 described species
(mean p 556:6). Clades with equivocal support (AICw p
40%–70%) tended to be small (!200 tips, 167–339 described
species). Putting these observations together, the power to
detect dichromatism-dependent diversification was suffi-
cient in clades with 1300 species, yet it was unlikely to be
detected in clades with 11,000 species.
We also considered whether the number of independent

origins of monochromatism or dichromatism in a clade
was related to the support for dichromatism-dependent
models, as expected if the power to detect this effect in-
creases with greater phylogenetic replication. For each clade,
we counted the number of transitions to either state using
ancestral-state reconstructions from the best-fitting HiSSE
model and used the smaller of the two counts in correla-
tions with model support. This relationship was negative,
the opposite of our prediction (r p 20:612, P ! :001; ta-
ble A28). The number of origins was strongly correlated
with the size of the phylogeny (r p 0:804, P ! :001). These
results further suggest that clade size is the most consistent
predictor of support for dichromatism-dependent HiSSE
models.
Discussion

A major goal in evolutionary biology is to identify the
traits that influence diversification rate differences among
clades (Wiens 2017). Since Darwin (1871), sexual dichro-
matism has been thought to be related to speciation and
thereby to faster rates of net diversification (speciation mi-
nus extinction) and greater species richness (Lande 1981;
West-Eberhard 1983; Ritchie 2007; Kraaijeveld et al. 2011;
Boughman 2014). Classic studies in several fish families have
provided strong evidence that sexual dichromatism is related
to assortative mating (Houde and Endler 1990; Seehausen
et al. 1997; Elmer et al. 2009), reproductive isolation (Bough-
man 2001;Mendelson 2003; Seehausen et al. 2008), and di-
versification (Kazancıoğlu et al. 2009; Wagner et al. 2012;
Smith et al. 2015; Furness et al. 2019; McGee et al. 2020).
We assembled and analyzed a data set of unprecedented size
to address how dichromatism impacts diversification rates
across ray-finned fishes. Large data sets can reduce poten-
tial biases caused when well-studied groups are not broadly
representative of all taxa (Beaulieu and O’Meara 2018).
In addition, large data sets allowed us to test for scale de-
pendency in the effects of dichromatism on diversification
rates. Researchers now recognize that the factors that drive
diversification may differ depending on the temporal or tax-
onomic scale examined (Jablonski and Bottjer 1991; Benton
2009; Kraaijeveld et al. 2011; Bellwood et al. 2017; Graham
et al. 2018). Yet empirical demonstrations of scale-dependent
effects of traits on diversification are rare (but see Huang
and Rabosky 2014; Harrington and Reeder 2017; Hernández-
Hernández and Wiens 2020).
Our results suggest that sexual dichromatism can ex-

plain diversification rate differences but only over limited
phylogenetic scales. For example, we found evidence that
dichromatism increases net diversification in the family
Poeciliidae (fig. 3). However, we found no such relation-
ship in the order Cyprinodontiformes, which contains Poe-
ciliidae (fig. 3). Similarly, it is well established that nuptial
colors help to maintain reproductive isolation among
closely related cichlid species (Seehausen et al. 1997, 2008;
Elmer et al. 2009), and sexual dichromatism can help ex-
plain which cichlid lineages have radiated in African lakes
(Wagner et al. 2012; McGee et al. 2020). However, we found
no support for dichromatism-dependent HiSSE models for
Cichlidae or for its two major subfamilies (fig. 3). We even-
tually found strong support for a positive relationship be-
tween dichromatism and diversification in clades within each
subfamily that were selected using a rank-free time cut-off
of 40 million years (fig. 4B).
The scale-dependent effect of sexual dichromatism on

diversification rates has been previously suggested. Kraaije-
veld et al. (2011) compared different studies of birds and
suggested that sexual dichromatism has the strongest effect
at shallow scales (e.g., within species or genera; but see
Cooney et al. 2017). They attributed this pattern to the ex-
tinction of newly formed species over time, eroding the
signal of diversification driven by sexual selection. This
mechanism should homogenize diversification rates and
reduce rate disparities among older clades. However, our
results suggest an additional cause for the scale-dependent
effect (even if extinction is present). Specifically, the dispar-
ity in rates among fish clades was often greater than diver-
sification rate variation within clades (e.g., rates among the
18 clades in figs. 2, A2). For example, even monochromatic
cichlids have higher diversification rates than dichromatic
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anabantiforms (fig. A2). Our rank-free comparisons also
shed light on the cause of the scale-dependent effect. Support
for dichromatism-dependent HiSSE models was negatively
correlated with clade size, regardless of clade age (fig. 4C;
table A27). The support for dichromatism-independent
models for larger clades (figs. 2–4) indicates that other fac-
tors (hidden states) better explain diversification rate vari-
ation among subclades.
On the basis of these observations, we suggest that large

clades are likely to be heterogeneous in other variables that
drive diversification, and these variables could have stron-
ger influence on diversification rates than sexual dichro-
matism. For example, habitat and trophic divergence are
thought to precede divergence in sexual signals in verte-
brate radiations (Mesnick 1996; Streelman and Danley 2003;
Bellwood et al. 2017). These ecological factors may drive
diversification rate differences among distantly related clades.
Sexual dichromatism may then act on these background
rates within clades. This top-down explanation is distinct
from the bottom-up explanation (erosion of signal through
time) of past studies (e.g., Kraaijeveld et al. 2011).
Many factors influence diversification rates across a

large clade like actinopterygian fishes. Some readers may
be concerned that no signal of any single trait on diversi-
fication rates could appear at this large scale because of
confounding factors influencing diversification. However,
several recent studies have shown significant effects of indi-
vidual traits on speciation or net diversification rates across
distantly related actinopterygian clades using similar data
and methods as in this study. These traits include latitude
(using HiSSE: Miller et al. 2018; using BAMM: Rabosky
et al. 2018), diet (Siqueira et al. 2020), lacustrine habitat
(Miller 2021), diadromy (Corush 2019), and several other
variables (Tedesco et al. 2017). In addition, single traits
(e.g., microhabitat) have been shown to have significant ex-
planatory power at much deeper scales, including across all
vertebrates (Wiens 2015) and all animals overall (Jezkova
and Wiens 2017).
Why might some traits matter more than others over

deep time? It may be that traits must have a consistent and
replicated effect among clades for this effect to appear in
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whole-clade analyses. For example, not only are high lat-
itudes positively related to diversification rates in marine
fishes, but also this positive effect appears independently
in distantly related clades found near both the northern
and the southern poles (Rabosky et al. 2018). In contrast,
sexual dichromatism does not have an effect on diversifi-
cation in all clades where it is present (even among young
clades; figs. 3, 4). When it does, the effect can be positive
or negative (figs. 2–4). Thus, there is no apparent effect
when these clades are combined (fig. 1; table A4).
Our results have methodological implications for di-

versification rate studies. Analyses of very large clades are
becoming increasingly common (e.g., Huang and Rabosky
2014; Miller et al. 2018; Rabosky et al. 2018; Hernández-
Hernández andWiens 2020). Greater sampling affords greater
power to detect trait-dependent diversification (Davis et al.
2013) and uncover generalities beyondmodel clades (Beaulieu
and O’Meara 2018). However, the strongest support for
an effect of sexual dichromatism was found among clades
with only ∼200 tips (fig. 4C). This conflict may be relevant
to other trait-dependent diversification studies. Counterintu-
itively, simply performing analyses on the largest possible
phylogeny may improve power but lead to an incorrect
conclusion that the trait is entirely irrelevant to diversifi-
cation. We are not aware of existing comparative meth-
ods that can automatically detect the scale at which a trait
is important for diversification. Therefore, we encourage re-
searchers studying large clades to also perform analyses on
a range of subclades.
Our results suggest that the presence of sexual dichro-

matism may not be enough to influence diversification
rates by itself. There are several potential reasons for this.
First, sexual dichromatism may promote speciation only
when certain extrinsic and intrinsic conditions are met,
such as environments with high water clarity (Seehausen
et al. 1997, 2008; Hodge et al. 2020) or when male court-
ship or ornaments are also present (Furness et al. 2019).
Second, some authors have suggested that the rate of
change in sexual signals is what drives diversification (Gomes
et al. 2016). Given this idea, we may not expect higher
diversification rates in groups with sexual signals that
igure 4: Sexual dichromatism and diversification with time. A, Summary of our rank-free clade selection procedure. We sliced the ray-
nned fish phylogeny at 100, 80, 60, and 40 myr ago and collected the resulting subclades. Subclades that were suitable for hidden state
peciation and extinction (HiSSE) analyses are highlighted in blue. Clade identities are given in tables A7–A10. B, Results of HiSSE analyses
n rank-free clades. Bars show the relative Akaike weights for 14 dichromatism-dependent models (dark gray) versus nine dichromatism-
dependent models (light gray). Each bar represents one clade in A. Signs indicate whether sexual dichromatism has a positive (1) or neg-
tive (2) effect on net diversification. Full HiSSE results are given in tables A20–A27. Clades are positioned vertically such that nested
ubclades are below their parent clade, indicated with arrows. Some clades have more than one nested subclade (double arrows). An asterisk
dicates that an identical clade was produced with the 80-myr slice as with the 100-myr slice because of the stem branch crossing both time
lices. Fish icon denotes African and Neotropical cichlid clades (image from Phylopic, with credit to Milton Tan). C, Comparing the support
r dichromatism-dependent HiSSE models when all 47 unique clades are pooled. We found a hook-shaped relationship with support and
lade size. We also found this relationship using the number of origins (smaller count of the origins of monochromatism or dichromatism).
ull correlation results are given in table A28.
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are present but relatively invariant among species. Third,
diversification rates may be associated with only elabo-
rate dichromatism, if the degree of dimorphism is a proxy
for the strength of sexual selection (Darwin 1871). We
did not find support for this hypothesis in wrasses or
darters (text A4; table A12; fig. A1). However, we have
not tested this hypothesis among all fish clades. The three
scenarios listed above may explain why diversification
rates vary among dichromatic species. However, these
factors cannot explain why monochromatic species often
had higher diversification rates than dichromatic species.
Why might sexually monochromatic fishes have di-

versification rates that are similar to (or faster) than those
of dichromatic fishes? In some clades, the absence of sex-
ual dichromatism may not indicate the absence of assor-
tative mating or sexual selection. Monochromatic fishes
may have other features involved in species recognition
or mate choice. Hamlets (Serranidae) have the fastest di-
versification rates among reef fishes (Siqueira et al. 2020).
Sympatric species of hamlets are reproductively isolated by
species-specific but sexually monochromatic color patterns
(Hench et al. 2019). Butterflyfishes are another sexually
monochromatic clade in which species-specific patterns
may maintain species boundaries (Hemingson et al. 2019).
Diversification rates among shallow marine fishes might
be better explained by color in general rather than sexu-
ally dimorphic colors (Mesnick 1996; Bellwood et al. 2017).
In environments with poor color transmission, signals that
are bioluminescent, acoustic, tactile, and electrical are of-
ten involved in courtship and may also increase diversi-
fication rates (Mesnick 1996; Davis et al. 2014). In fact,
these signals could have an even stronger and more con-
sistent effect on diversification than color. Mesnick (1996)
found that nonvisual sexual signals were associated with
faster diversification in all fish clades with these signals.
In contrast, visual signals had positive, negative, or no ef-
fect on diversification. The possibility remains that sexual
selection in general will help explain variation in diversi-
fication rates among ray-finned fishes but only when all
sexually selected signals are considered (Mesnick 1996).
Observations within fishes (e.g., assortative mating among

populations) imply that dichromatism increases species
richness by increasing speciation rates, as predicted by
classic literature (Darwin 1871; Lande 1981; West-Eberhard
1983). Yet higher diversification rates in dichromatic lin-
eages were due to lower extinction rates (not faster spe-
ciation rates) in several clades, including Anabantiformes,
Centrarchiformes, and Poeciliidae (fig. 2; tables A14, A18).
In some clades, dichromatism also decreased speciation
(e.g., Leuciscinae) and increased extinction (e.g., Blen-
niiformes, Tetraodontiformes). There are several mecha-
nisms that might explain these disparate effects. Sexual
selection can increase extinction risk if sexually selected
traits increase mortality (Promislow et al. 1992) but can
also reduce extinction by facilitating the purging of harm-
ful mutations (Lumley et al. 2015). The effect of sexual se-
lection on extinction in individual clades could depend on
factors such as fecundity, population size, environmental
stochasticity, and predation pressure (Promislow et al. 1992;
Martínez-Ruiz and Knell 2017). Incorporating approaches
from community ecology with diversification rate analyses
may reveal the biological mechanisms for how sexual di-
chromatism influences speciation or extinction within clades
(Tsuji and Fukami 2020).
Finally, what do the fish clades in which sexual dichro-

matism affects diversification have in common that is not
shared by similarly sized clades in which dichromatism has
no effect? Summarizing among all analyses (including ranked
and rank-free clades), we found 13 independent clades with
support for dichromatism-dependent HiSSEmodels (with
either positive or negative effects) once the appropriate phy-
logenetic scale was determined. These clades were Ana-
bantiformes, Blenniiformes, Centrarchiformes, two clades
in Characiformes, two clades in Cichlidae, Gobiidae, Leu-
ciscinae, Percidae, Poeciliidae, Tetraodontiformes, and a
clade containing loaches. There were eight clades where
dichromatism-dependent models were not supported even
at smaller scales. These clades were Atheriniformes, Belo-
niformes, Labridae, Pomacentridae, Salmoniformes1 Eso-
ciformes, Scorpaeniformes, Serranidae, and Syngnathiformes.
Informal comparisons suggest two general differences between
these groups (though there are exceptions). The first set of
clades (with dichromatism-dependent diversification) are
mostly freshwater, whereas the second set (dichromatism
independent) are mostly marine. In addition, the first set
of clades tend to show parental care (usually by males),
whereas the second set generally lack parental care (Breder
and Rosen 1966; Thresher 1984; Winemiller 1992). The
codistribution of sexual dichromatism and parental care
(Mank et al. 2005) could indicate stronger sexual selection
than dichromatism alone if parental care is also under
sexual selection (Alonzo 2012). Parental care may evolve
in freshwater more often than in the ocean if pelagic eggs
are adaptive in marine environments (Winemiller 1992).
Further, gene flow from highly dispersive larvaemay offset
deme formation due to sexual selection on divergent male
colors in marine species. Our data set on the presence of
sexual dichromatism among fishes could be used to test
these hypotheses in future comparative studies.
Conclusions

Researchers have found two patterns that potentially link
sexual selection and speciation (Boughman 2014). The first
is that premating isolation among many populations and
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species is based on differences in secondary sexual charac-
teristics, such as nuptial coloration (Seehausen et al. 1997;
Boughman 2001; Mendelson 2003; Elmer et al. 2009). The
second pattern is a positive relationship between sexual
dimorphism and diversification rates detected using com-
parative methods (Barraclough et al. 1995; Mesnick 1996;
Mank 2007; Wagner et al. 2012; Furness et al. 2019). Our
study suggests that the first pattern may not always lead
to the second. On the basis of our results, the well-
demonstrated effects of sexual dichromatism on specia-
tion do not scale up to explain diversification rate variation
across major clades (e.g., when comparing rates among
monomorphic and dimorphic families and orders). Thus,
our study helps resolve the paradox of the strong support
for the effect of sexual selection on speciation from exper-
imental and theoretical studies and the mixed support for
this effect from macroevolutionary studies (Kraaijeveld
et al. 2011; Tsuji and Fukami 2020).
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