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Abstract

Introgression is now commonly reported in studies across the Tree of Life, aided by

recent advancements in data collection and analysis. Nevertheless, researchers

working with nonmodel species lacking reference genomes may be stymied by a

mismatch between available resources and methodological demands. In this study,

we demonstrate a fast and simple approach for inferring introgression using RADseq

data, and apply it to a case study involving spiny lizards (Sceloporus) from northeast-

ern México. First, we find evidence for recurrent mtDNA introgression between the

two focal species based on patterns of mito‐nuclear discordance. We then test for

nuclear introgression by exhaustively applying the “five‐taxon” D‐statistic (DFOIL) to

all relevant individuals sampled for RADseq data. In our case, this exhaustive

approach (dubbed “ExDFOIL”) entails testing up to ~250,000 unique four‐taxon com-

binations of individuals across species. To facilitate use of this ExDFOIL approach, we

provide scripts for many relevant tasks, including the selection of appropriate four‐
taxon combinations, execution of DFOIL tests in parallel and visualization of intro-

gression results in phylogenetic and geographic space. Using ExDFOIL, we find evi-

dence for ancient introgression between the focal species. Furthermore, we reveal

geographic variation in patterns of introgression that is consistent with patterns of

mito‐nuclear discordance and with recurrent introgression. Overall, our study

demonstrates that the combination of DFOIL and RADseq data can effectively detect

introgression under a variety of sampling conditions (for individuals, populations and

loci). Importantly, we also find evidence that batch‐specific error and linkage in

RADseq data may mislead inferences of introgression under certain conditions.

K E YWORD S

ABBA‐BABA, batch effects, D‐statistics, hybridization, mito‐nuclear discordance

1 | INTRODUCTION

Introgressive hybridization is increasingly recognized as a common

and influential force of evolution (Harrison & Larson, 2014; Mallet,

2005; Schwenk, Brede, & Streit, 2008). The availability of genomic

data sets and new methods for identifying introgression has

facilitated a wide variety of new research in this area (reviewed in

Twyford & Ennos, 2012; Payseur & Rieseberg, 2016). Nevertheless,

it remains difficult to describe the timing, strength, directionality,

genomic patterns and geographic context of introgression, especially

for taxa lacking suitable reference genomes.
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A variety of methods for inferring introgression using genomic

data are now available (reviewed in Sousa & Hey, 2013; Payseur &

Rieseberg, 2016). In theory, many of these methods can be applied

to “reduced‐representation” data sets (e.g., RADseq, genotyping‐by‐
sequencing) without needing a reference genome. The lack of a ref-

erence genome remains a common scenario, especially for the many

researchers studying introgression in nonmodel organisms. However,

in these cases, mismatches between methodological demands and

available data or resources may be more common. For example,

many methods assume unlinked sites (e.g., isolation with migration

models; Hey, 2010), leading researchers to discard all but a single

variant per locus. Other methods rely on well‐resolved gene trees

from many independent loci (e.g., most phylogenetic species net-

works; Than, Ruths, & Nakhleh, 2008; Solís‐Lemus & Ané 2016),

which can be difficult to obtain using the relatively short sequences

characteristic of reduced‐representation data sets (e.g., Eaton & Ree,

2013). In other cases, methods require a predefined set of hypothe-

ses or demographic models to compare (e.g., Gutenkunst, Hernandez,

Williamson, & Bustamante, 2009; Cornuet et al., 2014). Such meth-

ods may also become computationally intractable as populations or

hypotheses are added. Finally, many methods that are otherwise

suitable may require that the number of populations and assignment

of samples to these populations are known (e.g., f‐statistics, Reich,
Thangaraj, Patterson, Price, & Singh, 2009). These tools also rely on

estimates of allele frequencies that could be biased by the number

of individuals sampled for each population and by the bioinformatic

processing of the data.

D‐statistics (i.e., ABBA‐BABA; Green et al., 2010; Durand, Patter-

son, Reich, & Slatkin, 2011) and related methods offer a simple yet

powerful framework for detecting introgression. These statistics typi-

cally require only a species‐tree hypothesis and site‐count patterns

for a sufficient number of biallelic sites (e.g., Martin et al., 2013;

Eaton & Ree, 2013), and are computationally efficient to calculate.

Pease and Hahn (2015) described DFOIL, a system of D‐statistics
applicable to a symmetric four‐taxon tree (four ingroup taxa [P1–P4],
plus an optional outgroup [O]) that can detect introgression and

potentially infer its direction. Using simulations, Pease and Hahn

(2015) demonstrated that DFOIL has high power and low type I error

under a wide range of conditions. By combining the results of four

D‐statistic “components”, DFOIL can infer either “ancestral” or “inter-

group” introgression. Each component is a four‐taxon D‐statistic
comparing three of the ingroup taxa. Ancestral introgression is that

between the ancestor of the younger pair of ingroup taxa (P1 and

P2) and one other ingroup taxon (P3 or P4). However, the direction

of ancestral introgression cannot be inferred with DFOIL. In contrast,

intergroup introgression signatures can be inferred between any two

ingroup taxa and can estimate directionality. Thus far, DFOIL has typi-

cally been applied across linkage groups of whole genomes or

exomes, to summarize the genomic “landscape” of introgression (e.g.,

Kumar et al., 2017; Schumer, Cui, Powell, Rosenthal, & Andolfatto,

2016; Sarver et al., 2017). In theory, DFOIL will also work with

reduced‐representation markers (e.g., RADseq), allowing for the

recovery of a single “genome‐wide” signature of introgression (Pease

& Hahn, 2015). However, this particular combination of methods

(DFOIL and RADseq) has rarely been used (but see Huang, 2016, and

Eaton & Ree, 2013 for a similar combination of approaches).

Here, we develop a novel application of DFOIL that involves

exhaustively testing relevant four‐taxon combinations of sampled

individuals among species and then summarizing the results over

phylogenetic and geographic space. In the present study, this

approach (referred to as “ExDFOIL,” https://www.github.com/Shea

ML/ExDFOIL) is paired with sequence data from double‐digest RAD-

seq (“ddRAD” hereafter; Peterson, Weber, Kay, Fisher, & Hoekstra,

2012). However, it is well suited for sequence data from any

reduced‐representation genomic data set with multiple individuals

per population or species. We demonstrate this approach in a case

study involving two lizard species from northeastern México. We

also provide scripts that allow this approach to be readily applied by

other researchers.

We also address how batch‐specific errors and the inclusion of sin-

gleton sitepattern counts from RADseq data might influence these

analyses of introgression. Sequence error is known to affect D‐statis-
tics, particularly when it is uneven between samples or populations

(Durand et al., 2011; Green et al., 2010). Batch‐specific error can arise

in RADseq or other genomic data from a wide variety of sources (Mas-

tretta‐Yanes et al., 2015) and might be expected to produce nonran-

dom patterns of sequence error when combining samples from

different batches. However, the potential impact of RADseq batch

effects on D‐statistics (and related approaches) is unexplored with

empirical data, to our knowledge. Therefore, we used our exhaustive

analyses here to examine the influence of batch identity. Similarly, the

inclusion of singleton site pattern counts (e.g., ABAAA, “singleton

counts” hereafter) in DFOIL is predicted to generate false positives

when counts are highly uneven between samples (Pease & Hahn,

2015). However, this possibility also remains unexplored (both in silico

and empirically). Therefore, we used our analyses here to empirically

evaluate the impact of including singleton counts.

Our study system is a small group of spiny lizard species (genus

Sceloporus) from eastern and central México. Sceloporus is a well‐
studied genus distributed from Canada to Central America containing

~100 species (Uetz, Freed, & Hošek, 2017). Sceloporus research

includes many studies focused on hybridization and introgression

(e.g., Hall & Selander, 1973; Sites, Davis, Hutchinson, Maurer, & Lara,

1993; Sites, Barton, & Reed, 1995; Leaché & Cole, 2007; Leaché,

2011, Leaché, Harris, Maliska, & Linkem, 2013, Grummer et al.,

2015). The present study focuses on a subset of the torquatus spe-

cies group, one of the youngest and most species‐rich groups of

Sceloporus (~17 nominal species, sensu Leaché, Banbury, Linkem, &

Nieto Montes de Oca, 2016). To our knowledge, this group has not

been the target of previous research on hybridization or introgres-

sion. The two focal species of this study are the small‐bodied,
desert‐dwelling S. ornatus (panel A of Figure 1) and the large‐bodied,
alpine‐dwelling S. oberon (sensu Wiens, Reeder, & Nieto Montes de

Oca, 1999; Figure 1f, G). These species were synonymized by Martí-

nez‐Méndez and Méndez‐de la Cruz (2007) using mtDNA alone

(although this was inconsistent with other analyses based on
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mtDNA; Wiens, Reeder, Montes, & Oca, 1999; Wiens, Kuczynski,

Arif, & Reeder, 2010; Wiens, Kozak, & Silva, 2013). Here, using

nuclear DNA, we find they are reciprocally monophyletic and not sis-

ter species.

In this study, we use this new ExDFOIL approach to evaluate

nuclear introgression between these Sceloporus species. We apply this

approach to new RADseq data for the torquatus group, using two dis-

tinct strategies for de novo ddRAD assembly and variant filtering (but

identical individual‐level sampling for downstream analyses). One

strategy is aimed at phylogeny estimation and divergence dating

across the clade (“clade‐wide” data set hereafter). The other is aimed

at maximizing power to detect introgression in the two targeted spe-

cies (“targeted” data set hereafter). We first develop a hypothesis of

introgression from patterns of mito‐nuclear discordance, based on

new mtDNA data and the RADseq phylogeny from the clade‐wide

data set. We then test for the expected genome‐wide signatures of

introgression, using both the clade‐wide and targeted data sets. The

results demonstrate that DFOIL can detect introgression with RADseq

data under a wide range of sampling conditions for loci, individuals

and populations. Furthermore, the ExDFOIL approach reveals

intraspecific geographic variation in the degree of introgression.

Finally, our study reveals that batch‐specific error in RADseq data may

mislead inferences of introgression under certain circumstances and

that inclusion of singleton counts may also be problematic.

2 | MATERIALS AND METHODS

2.1 | Geographic and taxonomic sampling

Our sampling focused on a subclade of the torquatus group formerly

referred to as the poinsettii group (sensu Wiens et al., 2010). We

emphasized widespread geographic sampling of S. ornatus and S.

(a) (d) (e)

(f)

(g)

(h)

(b)

(c)

F IGURE 1 (a) Adult male S. ornatus. (b) Representative habitat of S. ornatus: rocky slopes with Chihuahuan desert–scrub vegetation. (c) A
median‐joining haplotype network of ND4 sequences for S. ornatus (in blue and grey), S. oberon “black” (in black) and S. oberon “red” (in red)
made using PopART (Leigh & Bryant, 2015). The number of samples for each haplotype is indicated by the circle size (see scale in top‐left). (D)
Map of the contact zone between S. oberon and S. ornatus in northeastern Mexico. Black circles indicate sampled localities of oberon‐black; red
circles indicate sampled localities of oberon‐red. Localities for S. ornatus indicate the proportion of putatively introgressed (grey) and putatively
native (blue) ND4 haplotypes, as in the haplotype network. Map is a composite of digital elevation models and satellite imagery made in QGIS

v2.18 (http://qgis.osgeo.org/). Landsat 7 imagery courtesy of the U.S. Geological Survey. Note that this map encompasses the entire range of
S. oberon, but only the eastern portion of the range of S. ornatus. (e) Representative habitat of S. oberon “black”: high‐elevation pine–oak forest.
(f) Adult male S. oberon “black.” (g) Adult male S. oberon “red.” (h) Inset map and legend for map in panel (d). Photo (a) by John Wiens, photos
(b) and (e) by Anthony Baniaga, photos (f) and (g) by Shea Lambert
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oberon. We used samples from Wiens et al. (1999), supplemented

with additional fieldwork by NM, UOG and SML. In order to resolve

species‐level phylogeny using ddRAD data, we also included repre-

sentatives of seven other species of the torquatus group. These spe-

cies were selected on the basis of their close relationships to the

two focal species in previous phylogenetic studies (e.g., Wiens et al.,

2013; Leaché et al., 2016) and tissue availability. Many S. minor indi-

viduals were sampled, as this species will be studied in future work.

Vouchers, taxonomic identities and georeferenced locality informa-

tion for all samples are provided in Supporting Information Table S2.

There are two parapatric forms of S. oberon (Wiens et al., 1999).

We refer to them as “oberon‐black” and “oberon‐red” based on their

distinctive male dorsal coloration (Figure 1, panels F and G, respec-

tively). We excluded ddRAD and mtDNA data from putatively hybrid

individuals from the contact zone separating them (see sampling gap

in Figure 1). This zone will be examined in future work.

2.2 | mtDNA data collection

To better examine mito‐nuclear discordance, we supplemented pre-

viously published data for the ND4 mtDNA region (Wiens et al.,

1999; Martínez‐Méndez & Méndez de la Cruz 2007) with new ND4

data. Given that S. ornatus was represented by two or fewer individ-

uals in previous studies, we added multiple individuals and localities

for this species. Clade‐wide sampling of the torquatus group (and

outgroups) relied primarily on sequences from Wiens et al. (1999)

and Martínez‐Méndez & Méndez de la Cruz (2007). GenBank acces-

sion numbers and taxonomic identities for all sequences used are in

Supporting Information Table S1. We focused on ND4 because it

contains more informative sites than other mtDNA regions used in

this group (e.g., 12S, see table 3 of Wiens et al., 1999).

For most samples, we extracted genomic DNA (gDNA) from liver

or tail tissue using Qiagen DNeasy Blood and Tissue kit and mini‐spin
column protocol. For others, we used an alternative paramagnetic

bead protocol (M. Fujita, pers. comm.) using “Serapure” beads pre-

pared following the protocol of Faircloth and Glenn (2014), modified

from Rohland and Reich (2012). To amplify ND4 and adjacent tRNAs,

we used the primers ND4 (5’‐TGACTACCAAAAGCTCATGTAGAAGC‐
3’) and LEU (5’‐TRCTTTTACTTGGATTTGCACCA‐3’), from Forstner

et al. (1995). Each reaction totalled 25 µl, using 12.5 µl of GoTaq®

Green Master Mix (Promega), 1–2µl of template DNA, either 4 µl at

3 µM concentration for each primer, or 1 µl of 10 µM, and nuclease‐
free water to 25 µl. Reaction conditions generally followed Wiens

et al. (1999), but using 35 cycles. Sequencing was performed at the

University of Chicago Comprehensive Cancer Center DNA Sequencing

& Genotyping Facility and the University of Arizona Genetics Core

using Applied Biosystems 3730 DNA Analyzers.

2.3 | ddRAD data collection

We prepared ddRAD libraries generally following Peterson et al.

(2012), with departures described here and in Supporting Informa-

tion Appendix S1. We used the enzymes SbfI (5'‐CCTGCA*GG‐3')

and MspI (5'‐C*CGG‐3', New England Biolabs) for restriction digest.

We extracted gDNA as described above. We used Serapure beads

for paramagnetic bead clean‐up steps. For each sample, we used

250–500 ng of starting DNA. We used a combinatorial barcode

scheme to label individuals, with one barcode sequence on the 5’

end of the ligated adapter, and another on the 5’ end of the PCR

primer. PCR amplification was performed on pooled libraries of 5’

barcoded samples. Full barcoding schemes and sequences are pro-

vided in Supporting Information Table S2.

We prepared two separate “batches” of ddRAD libraries,

sequenced at different times and sequencing facilities (hereafter

“batch 1” and “batch 2”). Although the ddRAD protocol was similar

in both cases, there were several technical differences in library

preparation and sequencing. Full details of library preparation and

sequencing for both batches are described in Supporting Information

Appendix S1.

Differences in library preparation and sequencing for our batches

are expected to cause batch‐specific error (or “batch effects”; for

specific sources of error see Table 1 of Mastretta‐Yanes et al.,

2015). With this in mind, we included 20 biological replicates (i.e.,

separate aliquots from the same gDNA stock included in each batch;

Supporting Information Table S2). This allowed us to estimate (and

optimize) error rates and (together with replicates at the population

level) mitigate batch effects bioinformatically (see Supporting Infor-

mation Appendix S1). In general, we tried to include samples from

the same localities (or regions) in both batches to minimize introduc-

tion of real biological differences between the batches, which could

be confounded with batch‐specific error. However, samples of S. or-

natus from the four western‐most localities are restricted to batch 2.

Additionally, several newly sampled localities for oberon‐black and

oberon‐red were included in batch 2 only. Nevertheless, these sam-

pling differences do not seem to explain any of our results (see Sec-

tions 3.5 and 4.4).

TABLE 1 Coarse‐scale summaries of the proportions of positive
tests for introgression using DFOIL, for each of the four primary data
sets. “Ancestral” signatures involve the ancestor of taxa P1 and P2,
and one of either P3 or P4, and do not have directionality inferred.
Intergroup signatures involve any two nonsister terminal taxa, with
directionality inferred. Only tests including two individuals of
S. ornatus and two individuals of S. oberon (with at least one of
these oberon‐black) are considered here

Data set
Number
of tests

Proportion
of positive
tests

Proportion of
“ancestral”
signatures

Proportion
of “intergroup”
signatures

Targeted,

Full

117,600 0.350 0.331 0.019

Targeted,

Reduced

12,376 0.394 0.359 0.035

Clade‐wide,

Full

117,600 0.007 0.007 0

Clade‐wide,

Reduced

12,376 0.016 0.016 0
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2.4 | ddRAD de novo assembly and variant calling

We demultiplexed data using the function process_radtags in STACKS

V1.42 (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). We

discarded reads for which the expected cut sites and/or barcodes

were not found. We filtered PCR duplicates from our data using the

function clone_filter function in Stacks, specifying the use of 8‐bp
unique molecular identifiers located upstream of the barcode on the

5’ adapter end. We filtered data for adapters and low‐quality
sequence using the quality‐filtering step of DDOCENT V2.24 (Puritz,

Hollenbeck, & Gold, 2014), which uses TRIMMOMATIC V0.3.33 (Bolger,

Lohse, & Usadel, 2014). We ran this step before all subsequent

assembly, read mapping or variant‐calling steps.

We used two executions of the DDOCENT pipeline for de novo

assembly, read mapping and variant calling. The resulting data sets

(referred to as “targeted” and “clade‐wide”) differed primarily in the

samples used to create the de novo reference and in the parameters

used to filter variants. Importantly, both data sets ultimately include

the same set of individuals for use in DFOIL tests. We created a sin-

gle de novo reference for each data set, using data from multiples

species. The reference samples for the clade‐wide assembly included

eleven total representatives (Supporting Information Table S2) from

six species. These samples were selected on the basis of phyloge-

netic breadth and sequencing depth and include representatives of

S. torquatus (n = 1), S. poinsettii (n = 1), S. ornatus (n = 2), S. oberon

(n = 2), S. cyanogenys (n = 1), S. cyanostictus (n = 1) and S. minor

(n = 3). The assembly used a minimum‐read count (k1) of 3 and mini-

mum‐individual count (k2) of 4. The reference samples for the tar-

geted assembly included all available individuals of S. oberon and

S. ornatus from batch 2 and used values of k1 = 3 and k2 = 3. As

we did not include individuals of S. cyanogenys or S. cyanostictus in

the targeted reference panel, an increased rate of mapping error

may occur for these taxa. In theory, this could lead to inflated type I

error rates for tests involving these taxa (Durand et al., 2011). How-

ever, because relatively few individuals are available for these taxa,

this bias would likely persist even if the samples were included in

the reference panel. Consequently, we interpreted with caution

those tests using the targeted data set and one individual of

S. cyanostictus or S. cyanogenys (see Section 3.5).

For both de novo assemblies, we mapped reads using BWA

V0.7.15‐R1142‐DIRTY (Li & Durbin, 2010), with a match score of 1,

mismatch score of 3 and gap score of 5. We called variants using

the population‐informed model of FREEBAYES V1.0.2–33‐GDBB6160

(Garrison & Marth, 2012), with populations defined by sampling

locality (Supporting Information Table S2). For the clade‐wide assem-

bly, we mapped reads and called variants for all available individuals,

including those from batch 1. These individuals had better overall

sequencing depth but shorter read length (Supporting Information

Table S2). However, these individuals were not included in either

reference panel, as we observed that “mixed” reference panels

resulted in higher error rates for biological replicates. For the tar-

geted assembly for DFOIL analyses, we called variants for all available

individuals (including both batches) of S. oberon, S. ornatus,

S. cyanogenys and S. cyanostictus. Based on our mtDNA analyses

(Figure 2 and Supporting Information Figure S1), one sample of

S. minor was also included to use as the outgroup for our DFOIL anal-

yses. We selected an individual of S. minor rather than a more dis-

tantly related taxon to maximize the number of comparable sites for

analysis.

We applied distinct variant‐filtering pipelines to the raw clade‐
wide variants and targeted variants (contained in the Total-

RawSNPs.vcf files produced by DDOCENT). The clade‐wide variants

underwent relatively stringent filtering, which greatly reduced

between‐batch error rates (described in Supporting Information

Appendix S1). In contrast, the targeted variants underwent relatively

minimal filtering. Using VCFTOOLS V0.1.15 (Danecek et al., 2011), we

filtered all sites with quality scores <30, and all genotypes with cov-

erage <3. We then filtered any variants that were not biallelic SNPs

or that had missing data for >99% of individuals. We converted the

resulting vcf file to fasta format using the vcf_to_tab function of

vcftools and a publicly available perl script by C.M. Bergey (https://c

ode.google.com/archive/p/vcf-tab-to-fasta/). To characterize the

effect of sampling additional individuals, we further split the data

into “reduced” (Figure 2) and “full” (Supporting Information Figure S1)

sets of individuals. For reduced sampling, we kept a small number of

the best‐sequenced individuals from each sampled population. For

full sampling, we used these individuals plus any remaining individu-

als of S. cyanostictus, S. cyanogenys, S. oberon or S. ornatus that had

<50% missing sites. This threshold was applied to a minimally fil-

tered version of the clade‐wide TotalRawSNPs.vcf file (see Support-

ing Information Appendix S1 for filtering parameters).

2.5 | Phylogenetic analyses and divergence dating

For mtDNA data, we aligned sequences using the CLUSTAL W

(Thompson, Higgins, & Gibson, 1994) plugin in GENEIOUS V6 (Kearse

et al., 2012). We collapsed identical haplotypes using the “Find

Duplicates” function of GENEIOUS. Collapsed sequences are indicated

in Supporting Information Table S1. We manually inspected the pro-

tein‐coding section of the ND4 alignment to ensure open reading

frames for all sequences. In one case, we replaced an apparent stop‐
codon early in the protein‐coding sequence of an outgroup sample

(S. jarrovii, #AF154210) with three ambiguous base pairs (“NNN”).

We estimated phylogenetic relationships and divergence times

with the ND4 alignment using a relaxed‐clock Bayesian framework

with BEAST2 V2.4.6 (Bouckaert et al., 2014), executed using the CIPRES

SCIENTIFIC GATEWAY V3.3 (Miller, Pfeiffer, & Schwartz, 2010). We used

bModelTest (Bouckaert & Drummond, 2017) to infer and marginalize

models of substitution and rate heterogeneity. As bModelTest has

only been tested with sequences as short as 500 bp, we chose not

to use separate partitions for each codon position and the tRNA

region, which would all be <250 bp. Instead, we treated the entire

sequence as a single partition (but using models that incorporated

rate heterogeneity among sites). Given the scarcity of fossils within

the torquatus group, we used one secondary calibration point with a

range of dates from two recent studies (Bayesian relaxed‐clock trees
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F IGURE 2 Time‐calibrated trees for ddRAD data using the clade‐wide data set and reduced‐individual sampling, using RAXML and TREEPL (above)
and the mtDNA gene ND4 (below), using BEAST2. Blue shading indicates groups of samples assigned to S. ornatus, grey shading indicates groups of
samples assigned to S. oberon “black,” and red shading indicates groups of samples assigned to S. oberon “red.” For the ND4 tree, support values
indicated on nodes are posterior probabilities, and for the ddRAD tree, support values are the percentage of bootstrap replicates supporting that
bipartition. For both trees, support values of less than 50/0.5 are not shown, and asterisks indicate support values of 100/1.
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of Wiens et al., 2013; Leaché, Banbury, Linkem, Montes, & Oca,

2016). We calibrated the node corresponding to the most recent

common ancestor of S. grammicus and the torquatus group, the root

of the tree in the present study. We used a uniform prior from 12.9

to 18.0 million years ago (Mya), bracketed using these two point

estimates for this node. We selected a single uncorrelated lognormal

relaxed‐clock model (Drummond, Ho, Phillips, & Rambaut, 2006) and

a calibrated Yule‐tree prior (Heled & Drummond, 2012). We ran 40

million generations, sampling once every 10,000 generations, and ran

three replicate analyses. We assessed convergence using TRACER V1.6

(Rambaut, Suchard, Xie, & Drummond, 2014). We first checked that

all parameter and prior estimates had effective sample sizes (ESS) >

200 for each replicate analysis. We then compared replicate analy-

ses, ensuring that each provided similar estimates for all parameters.

Using the results of one analysis, we generated a maximum clade‐
credibility tree using common ancestor heights, after discarding the

first 10% of generations as burn‐in, using TREEANNOTATOR V.2.4.5.

For phylogenetic analyses of ddRAD data, we used RAXML V8.2.9

(Stamatakis, 2014) on the University of Arizona High Performance

Computing (UA HPC) cluster. We treated each concatenated matrix

as one partition, using the GTRCAT model of evolution. We used

the ‐f a option to search for an optimal tree and to assess support

using 100 rapid bootstrap replicates. We conducted two analyses

with the clade‐wide alignment, one with full‐ and one with reduced‐
individual sampling. We did not include biological replicate sample

pairs in phylogenetic analyses. Instead, we retained the replicate

with more overall sequence data. Several samples were excluded

from these analyses after being identified as having strongly discor-

dant signal, putatively owing to introgression. Removal of these sam-

ples allowed for consistent placement of S. cyanogenys, but had no

effect on placement of S. cyanostictus, S. oberon or S. ornatus (see

Supporting Information Appendix S1 for details).

We did not use the targeted data set for phylogeny estimation, for

two major reasons. First, invariant sites were not retained. Their exclu-

sion can negatively influence topological and branch length inference

(Bertels, Silander, Pachkov, Rainey, & van Nimwegen, 2014; Lewis,

2001), even when corrections for acquisition bias are applied (Leaché,

Banbury, Felsenstein, Nieto Montes de Oca, & Stamatakis, 2015). Sec-

ond, only S. oberon and S. ornatus individuals were used to create the

de novo reference assembly. This should bias the retained loci towards

those with variants within or between these particular species. This is

useful for detecting introgression between these species using DFOIL,

but not for estimating branch lengths or topologies.

For divergence dating using ddRAD data, we used penalized like-

lihood (Sanderson, 2002) implemented using TREEPL V1.0 (Smith &

O'Meara, 2012). This approach estimates divergence times based on

an existing topology and set of branch lengths (here from the con-

catenated likelihood analysis). Use of BEAST to simultaneously esti-

mate the topology and divergence times was not practical for the

ddRADseq data, given the large number of loci. We used a fixed‐
point calibration on the root, representing the crown‐node of the

torquatus group (sensu Leaché et al., 2016). We set this age to

11.8 Mya, based on the Bayesian estimate from Leaché et al. (2016).

We used the leave‐one‐out cross‐validation procedure (Sanderson,

2002) to choose the optimal smoothing parameter (10), comparing 6

smoothing values between 0.1 and 10,000 in tenfold increments.

2.6 | Exhaustive application of DFOIL (“ExDFOIL”)

Our approach to assessing introgression with DFOIL involved applying

this test exhaustively to all sets of individuals that matched the

assumptions of DFOIL. To do this, we first wrote a custom function

in R v3.4.1 (R Core Team, 2017) that accepts a phylogenetic tree and

a list of taxa, and returns all unique sets of taxa {P1, P2, P3, P4} such

that subsets {P1,P2} and {P3,P4} are reciprocally monophyletic, and

the most recent common ancestor of subset {P1,P2} is younger than

that of subset {P3,P4}. The latter assumption is met by all pairs of

clades with nonidentical clade age, but DFOIL expects that the

younger clade is listed first. In cases of identical clade ages, the func-

tion will still accept the combination as valid and return the clades in

an arbitrary order. However, no such cases exist for our tree. This

function depends on the R packages ape (Paradis, Claude, & Strim-

mer, 2004), phytools (Revell, 2012) and combinat (Chasalow, 2012)

and is available as Supporting Information File S1. We applied this

function using each of our two ddRAD‐based phylogenetic hypothe-

ses (reduced‐individual sampling, Figure 2; and full‐individual sam-

pling, Supporting Information Figure S1). We then filtered these sets

of taxa, retaining only sets with representatives of both S. oberon

and S. ornatus, resulting in 32,368 unique sets (reduced) and

237,600 (full) unique sets. For every test, we used the same out-

group, a sample of S. minor from batch 2 with highly complete data

(voucher EPR743, Supporting Information Table S2). We used the

default significance cut‐off of 0.01 for each DFOIL component, and

defaults for all other settings.

We ran the DFOIL pipeline on each list of unique sets, for both the

clade‐wide and targeted data sets, on the UA HPC cluster. We exe-

cuted the DFOIL pipeline using custom shell scripts and a publicly avail-

able perl script (selectSeqs.pl; http://raven.iab.alaska.edu/~ntakebay/

teaching/programming/perl-scripts/selectSeqs.pl), parallelized across

28 processors with GNU parallel (Tange, 2011). We then used custom

shell and R scripts to collate the DFOIL test results, associate sample

information with each test result, calculate summary statistics and

visualize results. Example scripts and input files for these steps are

available in the Dryad Digital Repository (https://doi.org/10.5061/

dryad.s5t3vm8) and at: https://www.github.com/SheaML/ExDFOIL.

For our primary analyses, we used the dfoilalt option of dfoil.py

to ignore singleton site pattern counts (e.g., ABAAA, “singleton

counts” hereafter). These counts can be included in DFOIL to reflect

the fact that introgression could transfer either the derived or ances-

tral allele (Pease & Hahn, 2015). Their inclusion is predicted to be

potentially problematic when error or substitution rates are skewed

(Pease & Hahn, 2015), but this prediction has not been formally

tested. Therefore, we repeated all tests while including singleton

counts using the default dfoil flag (see Section 2.8).

DFOIL uses chi‐square tests of significance, rather than Z‐scores
from bootstrap or block jackknife resampling, as in previous
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applications of D‐statistics (e.g., Green et al., 2010; Eaton & Ree,

2013). An assumption of the chi‐square test is that the sites consid-

ered are independent. This assumption is clearly violated in most

data sets (including our own). However, using simulation, Pease and

Hahn (2015) showed that D‐statistics will nevertheless approximate

a chi‐square distribution when a sufficient number of sites are con-

sidered. They concluded that the number of sites required can be

estimated using the parameter ρ = 4NerL, with Ne = effective popu-

lation size, r = recombination rate, L = the number of sites consid-

ered and a minimum value of ρ of ~4,000. Using values of Ne = 106

and r = 10−8, Pease and Hahn (2015) showed that the number of

sites required is ~100 kb. Although we lack formal estimates of

effective population sizes or recombination rates for our focal taxa,

we believe that we are likely sampling sufficient sites to avoid seri-

ous issues. Our clade‐wide data set samples from >400 kb, and our

targeted data set samples from >5 Mb. Moreover, while a recombi-

nation rate of 10−8 may be reasonable for sites within a single geno-

mic window, the per‐site recombination rate in our ddRAD data set

should be much higher, as ddRAD loci are scattered across the gen-

ome. Given these considerations, we do not believe that linkage

within or between our RAD loci is likely to inflate our type I error

rate, particularly for the targeted data set. Nevertheless, we lack for-

mal estimates of effective population size or recombination rate for

our data. To more directly address the possible effects of linkage on

our inferences, we also conducted ExDFOIL analyses using a single

site per locus (to remove the effects of linkage within loci) and boot-

strapped data sets (randomly resampling loci, to reduce the effects

of linkage between loci). A full description of the methods for these

analyses is found in Supporting Information Appendix S2.

2.7 | Examination of batch‐specific effects

To examine the influence of batch identity, we first compared pro-

portions of positive tests for introgression for each of the four pri-

mary data sets (using Supporting Information Tables S3–S6). We did

this for tests that included: (a) only batch 2 samples for the four

ingroup individuals (P1–P4); (b) only batch 1 samples for these indi-

viduals; and (c) any combination of batch 1 and batch 2 samples for

ingroup individuals. We then used stacked bar plots to visualize test

results for our targeted data set with reduced‐individual sampling,

grouped by “batch signature.” We defined the batch signature as a

string giving the batch of origin for each of the four ingroup individ-

uals (P1–P4). For example, we used “1122” for a test with P1 and P2

from batch 1 and P3 and P4 from batch 2.

2.8 | Examination of singleton‐count effects

Pease and Hahn (2015) predicted that DFOIL may return false posi-

tives when including singleton counts if sample‐specific error, or sub-

stitution rate, is high enough. The predicted mechanism for these

false positives is an inflated distance from all other taxa for a taxon

that has a relatively high error (or substitution rate) leading to false

inference of introgression for that taxon's sister lineage. For this

reason, DFOIL warns if either of the singleton‐count ratios P1:P2 or

P3:P4 is >1.25 or <0.75 for a given test.

To examine the influence of including singleton counts on our

DFOIL results, we first compared proportions of positive tests within

each data set, both for tests excluding singleton counts (executed

with dfoilalt flag) and for tests including them (using dfoil flag). We

also used a grouped bar plot to examine ratios of singleton counts in

P3 to singleton counts in P4 (using the test results from our targeted

data set with reduced‐individual sampling; Figure 6). This plot com-

pares the average P3:P4 ratio for tests with singleton counts

excluded vs. included, across each possible DFOIL result. Highly

uneven ratios may cause erroneous inference of introgression for

the taxon with a lower singleton count (Pease & Hahn, 2015). We

chose to examine the P3:P4 ratio because introgression signatures

returned by DFOIL can involve only one or the other of these taxa,

allowing for a clearer examination of the relationship between sin-

gleton count and involvement in introgression.

2.9 | Comparison of ExDFOIL and TreeMix

To compare ExDFOIL with an alternative methodology, we conducted

analyses using the program TREEMIX (Pickrell & Pritchard, 2012) and

our targeted data set with full‐individual sampling. TREEMIX creates

population networks in a two‐step process, where a population tree

is first inferred and migration edges are subsequently added to pop-

ulations that do not fit the tree model well. A detailed description of

our TREEMIX methods is found in Supporting Information

Appendix S3.

3 | RESULTS

3.1 | mtDNA alignment and phylogenetic results

The final ND4 alignment contained 122 unique haplotypes, 915 total

sites and 310 parsimony‐informative sites. We recovered a mostly

well‐resolved topology (Figure 2) for our species of interest (i.e.,

those sequenced for ddRAD): ((cyanostictus + cyanogenys), (minor

(oberon + ornatus))). As we were unable to successfully sequence

samples of S. serrifer for ddRAD, we do not focus on S. serrifer here.

However, in agreement with Martínez‐Méndez & Méndez de la Cruz

(2007), we find that S. serrifer is polyphyletic, with one clade related

to S. minor and another to S. cyanogenys. Sceloporus cyanogenys and

S. cyanostictus were each strongly supported as monophyletic, with

posterior probabilities (PP) of 1.00. Sceloporus minor was supported

as monophyletic with PP = 0.89, and weakly supported (PP = 0.72)

as the sister group to a well‐supported clade (PP = 0.92) containing

all S. oberon and S. ornatus samples. This clade is comprised of two

strongly supported subclades (PP = 1.00). One contains only S. orna-

tus samples, including five individuals from localities near the contact

zone with S. oberon (see Figure 1) and all samples from localities fur-

ther west (see Figure 4). The other contains all S. oberon individuals

and all remaining S. ornatus individuals from localities near the con-

tact zone. Within this “mixed” clade, oberon‐red is strongly supported
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as monophyletic (PP = 1.00), but oberon‐black and S. ornatus are

paraphyletic with respect to each other (with strong support for rele-

vant nodes).

3.2 | ddRAD sequencing, assembly and alignment
results

Read counts for all samples are in Supporting Information Table S2

(batch 1: mean = 1,145,317, range = 11,973–3,712,752, SD =

814,844; batch 2: mean = 983,548, range = 1,546–6,765,507, SD =

1,306,692). The clade‐wide reference assembly totalled 3,728 loci

and 922,077 sites. After all filtering steps (see Supporting Informa-

tion Appendix S1), we retained 1,712 loci and 404,966 sites. The

clade‐wide alignments used for phylogenetic analysis contained

2,950 (reduced individual) and 3,389 (full individual) parsimony‐infor-
mative sites. For full and reduced‐individual sampling of clade‐wide

variants, we retained 10,095 biallelic sites, including heterozygous

sites (DFOIL derives site pattern counts from biallelic sites with fixed

differences only). The targeted reference assembly totalled 22,433

loci and 5,538,162 sites. After filtering based on quality and depth,

we retained 205,101 biallelic sites from 21,818 loci, for both full and

reduced‐individual sampling. We did not retain any loci that were

entirely invariant across all individuals for either data set.

3.3 | ddRAD phylogenetic results

Using our clade‐wide ddRAD data set with reduced‐individual sam-

pling, we recovered a strongly supported species‐level hypothesis:

(minor(oberon(cyanogenys(cyanostictus+ornatus)))). Bootstrap support

was >90% for each interspecific split (Figure 2). All nominal species

were strongly supported as monophyletic, excepting S. minor

(monophyletic in the best tree, but with bootstrap <50%) and S.

cyanogenys (only one individual included). When the full set of indi-

viduals was used in tree estimation, bootstrap support for the

placement of S. cyanogenys fell to 83% (Supporting Information Fig-

ure S1). However, the species‐level topology remained identical and

otherwise strongly supported (Supporting Information Figure S1).

Notably, the topology from nuclear data shares none of the four

interspecific splits from the mtDNA tree for the same five species

(Figure 2).

3.4 | Exhaustive DFOIL results

Summaries for all DFOIL test results using the dfoilalt method (exclud-

ing singleton counts) are provided in Supporting Information Tables

S3–S6. We found that dfoilalt tests including two representatives of

oberon‐red resulted in very few introgression signatures (~1% of

such tests for the targeted data set with reduced‐individual sampling,

calculated from Supporting Information Table S3). This is consistent

with the monophyly of oberon‐red in our mtDNA data set (Figure 2).

Furthermore, we found very few introgression signatures in tests

including any representative of S. cyanostictus or S. cyanogenys using

the dfoilalt method (<2% of such tests for the targeted data set with

reduced‐individual sampling, calculated from Supporting Information

Table S3). Therefore, in Tables 1–3, we report proportions of posi-

tive tests considering only tests including two individuals of S. orna-

tus and two individuals of S. oberon (with at least one of these being

oberon‐black). For each data set, we provide the percentage of posi-

tive tests for ancestral and intergroup introgression in Table 1, raw

numbers for each unique DFOIL signature in Table 2, and percentage

of introgression signatures categorized by the species involved in

Table 3, and the median, range and standard deviation of nonsingle-

ton site pattern counts in Table 4.

Overall, introgression was inferred much more frequently using

the targeted data sets than the clade‐wide data sets (39.4% vs. 1.6%

for reduced‐individual sampling; Table 1), but this is unsurprising

given that the targeted data set had roughly fourfold more site pat-

tern counts per test (Table 4). Most positive results were for signa-

tures of ancestral introgression, particularly involving the ancestors

of pairs of S. ornatus (as P1 and P2) and oberon‐black. Intergroup sig-

natures (between terminal taxa) were recovered less frequently, and

most often indicated introgression from S. ornatus into S. oberon,

opposite the direction inferred from mtDNA (Table 3). However, we

show in the next section that these intergroup signatures may be

spurious and attributable to batch effects.

Phylogenetic and geographic patterns of introgression for the

targeted data set with reduced‐individual sampling are visualized in

Figures 3 and 4, respectively. We stress that the proportions pro-

vided merely indicate the proportion of positive tests, and do not

provide information on (for example) the quantity of introgression.

These visualizations demonstrate that introgression signatures

TABLE 2 Raw counts of DFOIL signatures recovered for each of
the four primary data sets. Signatures are indicated by the taxa
involved (e.g., “4” = P4) with directionality indicated by the arrow;
“12” indicates the ancestor of P1 and P2. The DFOIL signature (sensu
Pease & Hahn, 2015) is indicated in parentheses and corresponds to
the results of each of the four DFOIL components (DFO, DIL, DFI and
DOL, respectively; + indicates significantly positive, ‐ indicates
significantly negative, and 0 indicates not significantly different than
zero). Only tests including two individuals of S. ornatus and two
individuals of S. oberon (with at least one of these oberon‐black) are
considered here

Signatures
Targeted,
Full

Targeted,
Reduced

Clade‐wide,
Full

Clade‐wide,
Reduced

12 ↔ 3 (++00) 38,533 183 876 199

12 ↔ 4 (−−00) 426 4,262 0 0

1 → 3 (+++0) 1,312 10 0 0

1 → 4 (−−0+) 4 222 0 0

2 → 3 (++−0) 911 0 0 0

2 → 4 (−−0−) 2 189 0 0

3 → 1 (+0++) 20 1 0 0

3 → 2 (0+−−) 7 2 0 0

4 → 1 (−0++) 0 3 0 0

4 → 2 (0−−−) 2 1 0 0
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involving S. ornatus and oberon‐black were detected in similar pro-

portions under multiple phylogenetic and geographic contexts, as

expected if introgression was ancient. However, tests involving the

western‐most populations of S. ornatus recovered introgression

slightly less often, potentially indicating recurrent introgression

involving the easternmost populations of S. ornatus.

We expected that for our targeted data set, individuals of

S. cyanostictus and S. cyanogenys could have increased rates of map-

ping error relative to individuals of S. ornatus and S. oberon, as they

were not used in the reference panel (see Section 2.4). A bias in

rates of mapping error could theoretically lead to false positives for

D‐statistics (Durand et al., 2011). However, we observed the oppo-

site pattern, with tests involving S. cyanostictus or S. cyanogenys

recovering very few positive results (Tables S3‐S6). This result could

be caused by an increased rate of allelic dropout (or failure to map)

for these taxa. Consistent with this idea, tests involving S. cyanostic-

tus or S. cyanogenys had on average fewer counts than tests without

these taxa. For the targeted data set with reduced‐individual

sampling, tests involving these taxa had a median of 315 nonsingle-

ton counts, while tests without these taxa had a median of 505 non-

singleton counts (calculated using Supporting Information Table S7).

The results of our single‐site‐per‐locus analyses and locus‐level
bootstrapping analyses, which were designed to address the poten-

tial effects of linkage on our inferences using DFOIL, are summarized

in Supporting Information Table S11 and Figures S6 and S7. Overall,

we recovered introgression in ~85% of these resampled data sets

relative to the full data set. This pattern suggests that introgression

may be somewhat overestimated due to linkage, but that the overall

effect is relatively small and should not overturn our conclusions.

More detailed reporting and discussion of these results are found in

Supporting Information Appendix S2, and complete results can be

found at https://www.github.com/SheaML/ExDFOIL/Appendix-S2_

Materials.

3.5 | Batch‐specific effects

Results for each data set separated by batch identity (all batch 1

samples, all batch 2 samples or a mix) are presented in Table 5. We

focus here on the targeted data set with reduced‐individual sam-

pling. For ancestral introgression signatures (Table 5), the proportion

of positive tests was much higher for tests using only batch 2 sam-

ples (70.6%) than tests using only batch 1 samples (38.8%), or a

combination of batch 1 and 2 samples (35.0%). Intergroup signatures

of introgression were also inferred in a larger proportion using only

batch 2 samples (6.1%), compared to batch 1 (0.9%), or mixed sam-

ples (3.7%; Table 6). When applying the full‐individual sampling to

the targeted data set, there was also a reduction in the proportion

of positive tests when using batch 1 or mixed samples For the

clade‐wide data set, batch 1 had a higher proportion of positive tests

than batch 2, but the proportions were very low for both.

A visual comparison of the test results for each possible

“batch signature” is provided in Figure 5, using the targeted data

TABLE 3 Proportions of positive tests for introgression recovered
by DFOIL, collated by the species involved, for each primary data set.
Only tests including two individuals of S. ornatus and two individuals of
S. oberon (with at least one of these oberon‐black) are considered here

Data set

S. ornatus/
S. ornatus ↔
↔S. oberon

S. oberon/
S. oberon ↔

S. ornatus
S. ornatus ↔
S. oberon

S. oberon ↔

S. ornatus

Targeted,

Full

0.313 0.017 0.019 <0.001

Targeted,

Reduced

0.340 0.019 0.033 0.001

Clade‐wide,

Full

0.007 0 0 0

Clade‐wide,

Reduced

0.016 0 0 0

TABLE 4 Median, range and standard deviation of the number of nonsingleton counts for the targeted and clade‐wide data sets. These
values are compared for all tests, tests that recovered no introgression and tests that did infer introgression

Data set Tests considered
Median of nonsingleton
counts

Range of nonsingleton
counts

Standard deviation
of nonsingleton counts

Targeted, Reduced All tests 406 153–1,313 146

No introgression 388 153–1,313 147

Introgression 508 214–1,232 121

Clade‐wide, Reduced All tests 89 29–207 32

No introgression 88 29–207 32

Introgression 118 77–159 16

Targeted, Full All tests 359 74–1504 126

No introgression 349 74–1504 129

Introgression 395 113–1,297 103

Clade‐wide, Full All tests 91 9–279 33

No introgression 91 9–279 33

Introgression 113 69–160 16
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set with reduced‐individual sampling. These results show several

instances of overrepresentation of a particular introgression signa-

ture for one or more batch signatures. Most notably, the intro-

gression signature “P1→P4” is overrepresented in tests with a

batch signature of “1211” or “1221” and the introgression signa-

ture “P2→P4” is overrepresented in tests with a batch signature of

“2111” or “2121.” In these cases, we argue that each of these

patterns is the result of type I error induced by batch effects (see

Discussion). Also evident in Figure 5 is the overrepresentation of

“P1/P2←→P3” introgression in tests with a batch signature “1112.”

In this case, however, the overrepresentation is more likely due to

a sampling difference between the batches for the reduced‐indi-
vidual data sets (see Discussion).

The inclusion of some sampled populations in only a single batch

may raise concerns that our results are confounded by batch effects.

In the case of S. oberon, several localities were restricted to batch 2

only (oberonS1, oberonS3, oberonS4, oberonS6; Figure 4). However,

there is no apparent pattern in the introgression results for these

populations vs. populations included in both batches. In the case of

S. ornatus, the four western‐most localities were exclusively from

batch 2. These localities also show a reduction in the percentage of

tests returning introgression (Figure 4). However, this geographic

pattern is still apparent when results from western and eastern S. or-

natus localities are compared using only batch 2 (Supporting Infor-

mation Figure S5). Given this result, we think this geographic pattern

is not a product of batch effects.

F IGURE 3 Visualization of the proportions of positive tests for introgression over phylogenetic space, using the targeted data set with
reduced‐individual sampling. Tree is based on the clade‐wide data set (Figure 2). Pies above nodes indicate results when that node was the
most recent common ancestor of taxa P3 and P4 (the older pair of taxa); pies below nodes indicate results when that node was the most
recent common ancestor of taxa P1 and P2 (the younger pair of taxa). Only tests including two individuals of S. ornatus and two individuals of
S. oberon (with at least one of these oberon‐black) are considered here, as in Tables 1–3. Grey indicates no introgression, blue indicates
ancestral introgression involving two S. ornatus and one S. oberon, red indicates introgression from S. ornatus into S. oberon, orange indicates
ancestral introgression involving two S. oberon and one S. ornatus, yellow indicates introgression from S. oberon into S. ornatus. Batch identities
are indicated at the end of sample names (b1 = batch 1, b2 = batch 2). Prefixes indicate the species and locality for each sample, as seen in
Figure 4 and Supporting Information Table S2

828 | LAMBERT ET AL.



3.6 | Singleton‐count effects

For simplicity, results in this section are only from the targeted data

set with reduced‐individual sampling (results for all data sets in

Table 6). Importantly, we included all possible tests in Table 6 and

Figure 6. The inclusion of singleton counts massively increased the

proportion of positive tests involving representatives of S. cyanostic-

tus or S. cyanogenys, or without a representative of oberon‐black
(Table 6).

The effects of including singleton counts were dramatic: 45.0%

of tests returned introgression signatures when singleton counts

were included and 15.9% when they were not (Table 6). We found

many more signatures of directional introgression when including

singleton counts (8.1% vs. 1.3%), and a much higher proportion of

introgression signatures for tests that lacked representatives of

oberon‐black (43.8% vs. 1.1%).

Comparison of singleton‐count ratios for taxa P3 and P4 across

introgression signatures (Figure 6) showed that when singleton

counts were included, average count ratios were often well beyond

the limits suggested by the DFOIL authors (>0.75 and <1.25, indi-

cated by dotted red lines), which may lead to type I error (Pease &

Hahn, 2015). In comparison, tests excluding these counts typically

had ratios much closer to 1.

3.7 | TreeMix results

Our TREEMIX analysis inferred introgression between oberon‐black and

S. ornatus (Supporting Information Figure S8). Analyses including

additional migration edges (up to 5) improved model fit with dimin-

ishing returns and did not reveal further introgression events

between these taxa. The inferred migration edge suggests that intro-

gression occurred from within the oberon‐black clade into the ances-

tors of S. ornatus, with fractional genomic contribution of S. oberon

to S. ornatus of ~0.2. A detailed description of our TREEMIX results

and discussion of the relative advantages and disadvantages of TREE-

MIX vs. ExDFOIL are found in Supporting Information Appendix S3.

F IGURE 4 Visualization of the proportions of positive tests for introgression over geographic space, using the targeted data set with
reduced‐individual sampling. Localities of oberon‐red are in red, localities of oberon‐black are in black, and localities of S. ornatus are in blue. For
simplicity, we consider tests where P1 and P2 were drawn from S. ornatus, and P3 and P4 were drawn from one representative each of oberon‐
black and oberon‐red. Furthermore, we combine test results for individual localities regardless of if the locality was used for P1, P2, P3 or P4..
Green indicates ancestral introgression involving two S. ornatus and one S. oberon, and blue indicates introgression from S. ornatus into
S. oberon. All remaining tests returned no introgression
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Overall, the pattern of introgression inferred from TREEMIX was con-

cordant with that inferred by ExDFOIL and the mtDNA data.

4 | DISCUSSION

4.1 | Advantages of combining ddRAD and ExDFOIL

The combination of ddRAD and the exhaustive DFOIL (ExDFOIL)

approach developed here for detecting introgression has several

attractive properties. These include cost efficiency and ease of exe-

cution for laboratory and computational aspects alike. DFOIL also

allows for maximal use of data from ddRAD markers by concatenat-

ing all biallelic sites from all loci, as long as a sufficient number of

sites are sampled for the D‐statistics to approximate a chi‐square
distribution (Pease & Hahn, 2015). Many popular methods have

assumptions about linkage that are potentially problematic for

ddRAD and similar data types. For instance, some methods assume

that each variant is effectively unlinked (e.g., Pickrell & Pritchard,

2012), which could require the subsampling of only one variant per

ddRAD locus. Other methods may assume that variants within each

locus are completely linked, but loci are unlinked (e.g., Hey, 2010).

Either condition could be violated in ddRAD or similar data sets, and

these assumptions can be difficult to assess, especially without a ref-

erence genome.

The ExDFOIL approach is also free of several assumptions or

intermediate steps required by “population‐based” methods for infer-

ring introgression (e.g., f‐statistics: Reich et al., 2009). These methods

require the number of populations, assignment of samples to these

populations and allele frequencies to be known. This makes the

ExDFOIL approach more readily applicable to data sets with highly

uneven sampling between taxa and/or uncertainty about the number

and composition of populations, as in our data set. Moreover, by vir-

tue of its exhaustive nature, ExDFOIL provides a richer view of the

overall signal and noise in the data, as compared to a relatively small

number of population‐based hypothesis tests.

Despite its exhaustive nature, ExDFOIL remains computationally

efficient, especially if multiple processors are available for use. The

independent execution of a set of DFOIL tests is a readily paralleliz-

able problem, with no communication required between processors.

This means that computational time should decrease in a roughly

TABLE 5 Proportions of positive DFOIL tests for each data set, comparing tests using only batch 1 samples, tests using only batch 2
samples, and tests using a mix of samples from batches 1 and 2. Only tests including two individuals of S. ornatus and two individuals of
S. oberon (with at least one of these oberon‐black) are considered here

Data set Batch identity Number of tests
Proportion of
positive tests

Proportion of
“ancestral” signatures

Proportion of
“intergroup” signatures

Targeted, Reduced Batch 1 only 1,260 0.397 0.388 0.009

Batch 2 only 180 0.767 0.706 0.061

Mixed 10,936 0.387 0.350 0.037

Targeted, Full Batch 1 only 18,473 0.354 0.349 0.005

Batch 2 only 1,045 0.487 0.467 0.009

Mixed 98,082 0.348 0.327 0.022

Clade‐wide, Reduced Batch 1 only 1,260 0.018 0.018 0

Batch 2 only 180 0.011 0.011 0

Mixed 10,936 0.016 0.016 0

Clade‐wide, Full Batch 1 only 18,473 0.012 0.012 0

Batch 2 only 1,045 0.003 0.003 0

Mixed 98,082 0.007 0.007 0

TABLE 6 Proportions of positive DFOIL tests for each data set, comparing tests with singleton counts excluded against tests with singleton
counts included

Data set Singleton counts
Proportion of
positive tests

Proportion
ancestral

Proportion
intergroup

Proportion of positive results
for tests without oberon‐black

Targeted, Reduced Excluded 0.159 0.145 0.013 0.011

Included 0.450 0.369 0.081 0.438

Targeted, Full Excluded 0.165 0.157 0.009 0.011

Included 0.403 0.342 0.061 0.405

Clade‐wide, Reduced Excluded 0.006 0.006 0 0

Included 0.094 0.091 0.003 0.121

Clade‐wide, Full Excluded 0.003 0.003 0 <0.001

Included 0.103 0.098 0.005 0.110
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linear manner with the number of available processors. This also

means that the computational load of ExDFOIL could easily be split

across entirely independent machines, and the results later collated.

The calculation of D‐statistics scales easily with the number of sites.

Therefore, the major source of computational load for most ExDFOIL

analyses will be the number of tests considered. This number will

depend on the total number of taxa and the structure of the

phylogenetic tree used. In our case, an increase in sampling of 25

individuals, from 36 (reduced‐individual sampling) to 62 (full‐individ-
ual sampling), generated 236,110 additional tests, or roughly 104

tests per individual added.

Our results show that the combination of ddRAD and DFOIL can

recover signatures of introgression using only a small fraction of

genome‐wide variation. Given an estimate of 2.73 pg for the

F IGURE 6 Comparison of the ratio of singleton counts in taxa P3:P4 for tests including (grey) or excluding (black) singleton counts, for the
targeted data set with reduced‐individual sampling. Dashed lines are drawn at values of 1.25 and 0.75 for the P3:P4 ratio, as tests with count
ratios that exceed these bounds are considered to be potentially problematic (i.e., DFOIL prints a warning). Bar plots are grouped by test results,
indicated on the x‐axis. For example, “123” representing ancestral introgression involving P1/P2 and P3, and “13” indicating intergroup
introgression from P1 into P3. We note that count ratios for introgression results of “23” or “na” are not compared here, as there were no
results of “23” when singleton counts were excluded, and no results of “na” when singleton counts were included. Otherwise, all tests of the
targeted data set with reduced‐individual sampling are considered [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Stacked bar plots displaying
all positive test results for the targeted
data set with reduced‐individual sampling,
comparing tests with each possible “batch
signature,” defined simply as the batch
identity of samples P1, P2, P3, P4 in that
order (e.g., “1111” indicates that all four
taxa belong to batch 1). Test results are
colour coded. For example, “P4 → P2”
represents intergroup introgression from
taxon P4 into taxon P2
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genome size of a congener (S. magister; De Smet W.H.O., 1981), and

a conversion factor of 978 x 106 base pairs per picogram (Doležel,

Bartos, Voglmayr, & Greilhuber, 2003), our targeted data set sampled

only ~0.2% of the genome (~5.5 106 bp). We detected introgression

between the expected taxa with as few as 69 nonsingleton site pat-

tern counts for the clade‐wide data set, and 113 for the targeted

data set (Table 4). Furthermore, we were able to detect introgression

even when including individual samples with large amounts of miss-

ing data (as in the full‐individual sampling). For example, tests includ-

ing a sample of S. ornatus with >75% missing data in the targeted

data set (NM170p1) still recovered introgression in >20% of tests

(calculated from Supporting Information Table S4). This result sug-

gests that DFOIL may perform well despite missing data or limited

intrapopulation sampling.

The signals of introgression that we recovered between our two

focal species (S. oberon, S. ornatus) were phylogenetically ancient and

geographically widespread (Figure 3 and Figure 4). However, we did

discover subtle but sensible geographic variation in introgression

within S. ornatus (discussed below). Presumably, the exhaustive appli-

cation of DFOIL demonstrated here could reveal stronger variation in

the phylogenetic, geographic and/or temporal evidence of introgres-

sion in other cases. Nevertheless, an important shortcoming of

ExDFOIL is that the quantity of introgression, in terms of genomic

contribution from each species, is not estimated. This could be

addressed instead population‐based approaches (e.g., Reich et al.,

2009; Pickrell & Pritchard, 2012).

Finally, we note that we used ExDFOIL here to investigate a single

a priori hypothesis of introgression. However, we believe the

approach may be particularly well‐suited as a tool for de novo dis-

covery of introgression as it produces a richly informative view of

the signal (and noise) in a given data set with relatively few assump-

tions.

4.2 | Mito‐nuclear discordance indicates recurrent
introgression

We argue that the rampant paraphyly of mtDNA from S. ornatus and

S. oberon that we observe here is best explained by repeated intro-

gression between these species (Figure 2). This introgression may

have been influenced by Pliocene climate change and/or Pleistocene

climate cycles and associated range shifts or population‐size fluctua-

tions (although this would require detailed analyses to test, beyond

the scope of the present study). We think it is unlikely that incom-

plete lineage sorting alone could produce these patterns, a conclu-

sion that is in agreement with similar studies of mtDNA discordance

in related lizard clades (e.g., McGuire et al., 2007; Jezkova, Leal, &

Rodríguez‐Robles, 2013). First, it is less likely that a species will be

nonmonophyletic in mtDNA due to incomplete lineage sorting, given

the much smaller effective population size and rapid evolution of

mtDNA (e.g., Wiens & Penkrot, 2002; Hudson & Turelli, 2003; Zink

& Barrowclough, 2008). Second, there is a geographically biased dis-

tribution of putatively introgressed haplotypes, centred on the con-

tact zone between oberon‐black and S. ornatus (Figure 1). This

pattern is not expected under incomplete lineage sorting alone (Funk

& Omland, 2003).

We suggest that mtDNA introgression most likely occurred from

oberon‐black into S. ornatus, based on the co‐occurrence of two dis-

tinct haplogroups within single S. ornatus localities near the range of

oberon‐black (Figure 1, panel d). Under this proposal, one haplogroup

represents “native” S. ornatus haplotypes, more closely related to

S. ornatus samples from localities further west (depicted in blue in

panels c and d of Figure 1). The other haplogroup represents intro-

gressed haplotypes, more closely related to geographically proximate

oberon‐black (depicted in grey in panels c and d of Figure 1).

If introgression occurred in the opposite direction (from S. orna-

tus into oberon‐black), we would need an alternative explanation for

the retention of two distinct ND4 haplogroups in single localities of

S. ornatus for at least ~4.64 Mya (the crown‐node ancestor of all S.

oberon and S. ornatus, 95% highest posterior density [HPD] 2.21–
6.49 Mya). Several selection‐based scenarios could explain polymor-

phism of ancient mtDNA, including negative frequency‐dependent
selection (Kazancıoğlu & Arnqvist, 2014) or sex‐ratio distorting bac-

terial infection (e.g., Jiggins & Tinsley, 2005). Nevertheless, because

introgression from oberon‐black into S. ornatus does not require the

invocation of any additional evolutionary forces, we consider it the

more likely direction of mtDNA introgression.

Our analyses suggest that mtDNA introgression between S.

oberon and S. ornatus occurred at least once, in an event as old as

2.29 Mya (crown‐node ancestor of all S. oberon mtDNA samples,

95% HPD interval 1.31–3.38 Mya). One or two additional instances

of mtDNA introgression are indicated by younger discordant rela-

tionships (grouping S. ornatus and oberon‐black) as young as

0.61 Mya (youngest strongly supported node with both S. oberon

and S. ornatus descendants, 95% HPD 0.24–1.04 Mya; Figure 2).

More ancient mtDNA introgression, involving the ancestors of S.

oberon and S. ornatus, is also suggested by the discordance between

mtDNA and ddRAD estimates for the phylogenetic position and age

of the most recent oberon–ornatus ancestor (Figure 2). If the mtDNA

clade of oberon‐ornatus is caused by introgression, then introgression

may have occurred as long ago as ~5.29 Mya (stem node of S.

oberon and S. ornatus in the mtDNA tree, 95% HPD 3.34–7.26; Fig-
ure 2).

4.3 | Historical introgression revealed using
RADseq data and ExDFOIL

Our exhaustive DFOIL approach (ExDFOIL) revealed phylogenetic and

geographic patterns of introgression between S. oberon and S. orna-

tus. Introgression occurred anciently, between the ancestors of S. or-

natus and oberon‐black, and is broadly detectable across the range of

both taxa. This includes populations from the western extent of the

range of S. ornatus, >150 km from the range of S. oberon (Figures 3

and Figure 4). However, a slight reduction in the frequency of posi-

tive tests is evident for these western‐most populations. This may

indicate that these populations harbour less introgressed ancestry

than their eastern counterparts, which may have participated in
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more recent introgression. This result is consistent with the geo-

graphic patterns of mito‐nuclear discordance we observed in S. orna-

tus, where only easternmost populations contain recently

introgressed mtDNA haplotypes (see above). Although the western‐
most S. ornatus localities are exclusively from batch 2, we do not

believe that this result is compromised by batch effects, as the geo-

graphic pattern is still apparent when comparing only batch 2 sam-

ples (Supporting Information Figure S5).

Introgression involving S. ornatus and oberon‐black is rarely

inferred in tests that include one representative of S. cyanostictus or

S. cyanogenys and one of S. ornatus (Figure 3). As discussed in sec-

tion 3.4, this result may be caused by higher rates of allelic dropout

for S. cyanostictus and S. cyanogenys, at least for the targeted data

set. Closer examination of these tests, however, reveals that individ-

ual DFOIL components frequently indicate introgression involving

S. ornatus and oberon‐black, but also introgression between oberon‐
red and S. cyanostictus or S. cyanogenys (Supporting Information

Tables S3–S6). It may be that the combination of introgression

between, for example, P1↔P3 and P2↔P4 prevents DFOIL from infer-

ring either introgression type in these cases.

We were able to detect introgression using the clade‐wide data

set, but only rarely (<1% overall; Table 1), despite sampling >1,700

loci and >400,000 bp. This result is not necessarily surprising, how-

ever. Many tests using the clade‐wide data may not have sufficient

count data (e.g., zero observations for one or more site patterns;

Table 4, Supporting Information Tables S5 and S6). Clearly, our

clade‐wide data set has low power to detect historical introgression.

Nevertheless, this data set is more appropriate for resolving phy-

logeny using ddRAD data, as it contains more accurate variants (see

Supporting Information Appendix S1, Tables S12–S16), and does not

share the same potential for mapping error bias of the targeted data

set (see Section 2.4).

We did not detect intergroup introgression signatures in large

frequencies overall when excluding singleton counts (Tables 1–3).
Moreover, many of these signatures may be compromised by batch‐
specific error (see next section). Simulations show that DFOIL may fail

to polarize introgression when directional introgression is weak,

occurs close to the divergence time of P1 and P2 (Figure 5 of Pease

& Hahn, 2015) or is bidirectional (Schumer et al., 2016). The level of

asymmetry in nuclear introgression between oberon‐black and S. or-

natus is therefore considered unknown.

4.4 | Batch effects in RADseq data may mislead D‐
statistics and DFOIL

The potential impact of batch effects on analyses of RADseq data is

rarely discussed in the literature (but see Deagle, Faux, Kawaguchi,

Meyer, & Jarman, 2015; Mastretta‐Yanes et al., 2015). We found

that batch effects apparently reduced power for detecting introgres-

sion, at least for the targeted data sets designed for analysing intro-

gression (Table 5). For the clade‐wide data sets, batch 1 recovered

slightly higher numbers of positive tests overall. This may be due to

the greater number of individuals sequenced in batch 1 (especially

for oberon‐black and S. ornatus from near the contact zone), but the

power of the clade‐wide data was also consistently low (Table 5). As

batch 1 had a shorter read length (100 bp vs. 125 bp), some reduc-

tion in power for tests using batch 1 samples was expected a priori.

We also found clear associations between particular introgres-

sion signatures and batch signatures (Figure 5, see Results). In some

cases, these associations seem to likely reflect some level of type I

error induced by batch effects. In the case of “P1/P2←→P3” intro-

gression and batch signature “1112,” the potential for batch effects

to influence the results seems obvious, as introgression is inferred to

involve the three taxa from batch 1, while the representative from

batch 2 is not involved. However, the majority of these signatures

correspond to introgression involving two representatives of oberon‐
black (~75%; Supporting Information Table S3). As batch 2 retained

only one individual of oberon‐black in the reduced‐individual sam-

pling, this type of introgression was not detectable using only batch

2 samples. In this case, confounding of batch and sampling effects

prevents us from making a firm interpretation.

In order to understand how batch effects might influence “P1→P4”

and “P2→P4” introgression signatures, a consideration of the unique

DFOIL signatures (sensu Pease & Hahn, 2015) underlying these results

is required. Briefly, DFOIL signatures are defined by the individual

results for each of the four DFOIL components. Each component is a

four‐taxon D‐statistic that can be significantly different than zero in

either the positive (+) or negative (−) direction (each implying a differ-

ent taxon is involved in introgression), or not significantly different

than zero (0). For example, one potential signature would be “‐‐+0”.
Importantly, both the “P1→P4” and “P2→P4” DFOIL signatures (“‐‐

0+” and “‐‐0−”) differ from a DFOIL signature of ancestral introgres-

sion (“‐‐00”) by only one DFOIL component (“DOL”). This means that a

false positive result for DOL will imply directional introgression when

placed against the background of a “true” signature of ancestral

introgression. The DOL component compares the site pattern counts

for P1, P2 and P4. If batch‐specific error is generating false positives,

this should occur when P1 and P2 come from different batches, and

P4 comes from the same batch as the donor taxon, while the batch

identity of P3 should not matter. As expected, “P1→P4” introgression

is overrepresented in tests with batch signatures of “1211” and

“1221,” and “P2→P4” introgression is overrepresented in tests with

batch signatures “2111” and “2121” (Figure 5). Specifically, we find

that P1 and P2 are from different batches in 81.3% (334/411) of

tests with “‐‐0+” or “‐‐0−” introgression signatures and that P4 is

from the same batch as the donor taxon in 95.8% of these cases

(320/334), which is 77.8% of the total instances of directional intro-

gression obtained using a mix of batch 1 and 2 samples (320/411,

proportions calculated from Supporting Information Table S3). Unlike

the situation described above for “P1/P2←→P3” introgression, no dif-

ference in sampling regime between the batches could fully explain

this bias. We therefore conclude that some intergroup signatures we

recovered are spuriously produced by batch effects, although we

cannot say for sure which (or how many). This finding has important

implications for other RADseq studies that focus on introgression

using data from multiple batches.
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4.5 | The inclusion of singleton counts may mislead
DFOIL

Pease and Hahn (2015) highlighted the theoretical potential for the

inclusion of singleton counts to mislead DFOIL, but this issue has not

been explored using simulated or empirical data (to our knowledge).

We found that the inclusion of singleton counts in DFOIL tests dra-

matically increased the total proportion of positive tests recovered,

and substantially altered the phylogenetic composition of the recov-

ered introgression signatures (Table 6, Supporting Information Tables

S7–S10). Specifically, adding singleton counts greatly increased the

proportion of positive introgression results for tests that did not

include any representative of oberon‐black (from ~1% to >40% for

the targeted data set), and increased the overall proportion of inter-

group introgression signatures recovered (from ~1% to ~6%–8% for

the targeted data set). We consider these results suspect, indepen-

dent of the actual singleton counts, for two reasons. First, most of

the remaining intergroup signatures inferred when excluding single-

ton counts are potentially compromised by batch effects (see Sec-

tion 4.4). Second, although we cannot rule out historical

introgression between oberon‐red and S. ornatus, they are not geo-

graphically adjacent, and oberon‐red is monophyletic with respect to

S. ornatus in our mtDNA tree (Figure 2). These results contrast with

those for S. ornatus and oberon‐black. Thus, we suspect that inferred

introgression between S. ornatus and oberon‐red is artefactual.

Our ExDFOIL analyses also allow a direct appraisal of singleton‐
count ratios and associated results for thousands of tests. Using the

targeted data set with reduced‐individual sampling, we compared

average P3:P4 count ratios for tests excluding vs. including singleton

counts separately for each DFOIL result (Figure 6). This comparison

demonstrates that average count ratios when including singleton

counts are typically much more extreme than count ratios when

excluding singleton counts. In many cases, the average count ratio

when including singleton counts exceeds the recommended bounds

of 0.75 or 1.25 (Figure 6). Furthermore, count ratios were consis-

tently skewed such that the taxon with a lower singleton count was

inferred to be involved in introgression, matching the predictions of

Pease and Hahn (2015). These results provide empirical support for

the idea that the inclusion of singleton counts maybe problematic

(Pease & Hahn, 2015).

4.6 | Linkage in RADseq data may mislead DFOIL

We found that using single‐site‐per‐locus sampling and locus‐level
bootstrapping approaches reduced the number of introgression

events observed when compared to the chi‐square method (Support-

ing Information Appendix S2; Table S11). Although we found that

~85% of cases were robust to this putative linkage issue, our results

nevertheless indicate that the chi‐square method may be susceptible

to the effects of linkage, even when sampling from ~5.5 106 bp (as

in our targeted data set). Thus, we encourage users to conduct simi-

lar resampling sensitivity analyses when combining RADseq data and

DFOIL, and provide scripts to replicate our analyses at https://www.

github.com/SheaML/ExDFOIL/Appendix-S2.

5 | CONCLUSIONS

We demonstrate a novel application of the DFOIL method (Pease &

Hahn, 2015) for detection of introgression. The approach (“ExDFOIL”)

involves exhaustively applying DFOIL to hundreds of thousands of

unique four‐taxon combinations of individuals, here sequenced using

a reduced‐representation protocol (ddRAD). We demonstrate

ExDFOIL in an empirical system in which mito‐nuclear discordance

independently suggests recurrent introgression. We find that DFOIL

can detect introgression under a broad range of genomic and geo-

graphic sampling conditions. Furthermore, the ExDFOIL approach

reveals subtle intraspecific geographic variation in introgression that

is also consistent with observed patterns of mito‐nuclear discordance
and a hypothesis of recurrent introgression. Our results may also

provide the first empirical evidence that batch effects in RADseq

data can mislead inferences of introgression. We also find empirical

support for the predictions of Pease and Hahn (2015) that the inclu-

sion of singleton counts in DFOIL analyses may yield problematic

results. Finally, we found that linkage between sites and/or loci in

RADseq data may slightly inflate the rate of introgression recovery

by DFOIL, even when sampling many sites (~5.5x106 in our case). We

provide scripts to apply our approach to other data sets at https://

www.github.com/SheaML/ExDFOIL.
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