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Phylogeneticists often design their studies to maximize the number of genes included but minimize the
overall amount of missing data. However, few studies have addressed the costs and benefits of adding
characters with missing data, especially for likelihood analyses of multiple loci. In this paper, we address
this topic using two empirical data sets (in yeast and plants) with well-resolved phylogenies. We intro-
duce varying amounts of missing data into varying numbers of genes and test whether the benefits of
excluding genes with missing data outweigh the costs of excluding the non-missing data that are asso-
ciated with them. We also test if there is a proportion of missing data in the incomplete genes at which
they cease to be beneficial or harmful, and whether missing data consistently bias branch length esti-
mates. Our results indicate that adding incomplete genes generally increases the accuracy of phyloge-
netic analyses relative to excluding them, especially when there is a high proportion of incomplete
genes in the overall dataset (and thus few complete genes). Detailed analyses suggest that adding incom-
plete genes is especially helpful for resolving poorly supported nodes. Given that we find that excluding
genes with missing data often decreases accuracy relative to including these genes (and that decreases
are generally of greater magnitude than increases), there is little basis for assuming that excluding these
genes is necessarily the safer or more conservative approach. We also find no evidence that missing data
consistently bias branch length estimates.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The problem of missing data in phylogenetic analysis is an
important issue because missing data are common in many data
matrices (e.g., Philippe et al., 2004; Fulton and Strobeck, 2006;
Burleigh et al., 2009), and are only absent in many others because
taxa and genes are deliberately excluded in order to avoid them.
For example, the issue of missing data may arise because of gaps
in alignments, because data are unavailable for some species for
some genes, or because molecular data are lacking entirely (e.g.,
fossils). There has been extensive debate about whether missing
data should be included in phylogenetic analyses or not, and the
possible consequences of both approaches (e.g., Huelsenbeck,
1991; Wiens and Reeder, 1995; Wiens, 1998, 2003a,b, 2005;
Driskell et al., 2004; Philippe et al., 2004; Wiens et al., 2005,
2010; Wiens and Moen, 2008; Burleigh et al., 2009; Lemmon
et al., 2009; Sanderson et al., 2010, 2011; Wiens and Morrill,
2011; Wiens and Tiu, 2012; Roure et al., 2013). In this debate, it
is important to remember that missing data cells are only included
because excluding missing data also requires excluding some taxa
and/or characters from the analysis, which have non-missing data
(Wiens, 1998; Cho et al., 2011; Schaefer and Renner, 2011; Zwick
et al., 2011). The fundamental question is: when do the benefits
of excluding the missing data outweigh the costs of excluding
the non-missing data that are associated with them?

Missing data can be added to an analysis by two primary mech-
anisms: by adding incomplete taxa or by adding incomplete char-
acters (Wiens, 2003a). Many studies have shown that incomplete
taxa can often be included with relatively limited negative impacts,
especially when the number of characters is large (e.g., Wiens,
2003b; Driskell et al., 2004; Philippe et al., 2004; Wiens and
Moen, 2008; Cho et al., 2011; Wiens and Morrill, 2011; Wiens
and Tiu, 2012; Roure et al., 2013). Specifically, these studies show
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Fig. 1. Maximum likelihood estimate of phylogeny for 8 yeast species (seven
species of Saccharomyces and an outgroup, Candida albicans) based on concatenated
analysis of 106 genes (originally from Rokas et al., 2003), showing numbered nodes
(for assessing accuracy) and bootstrap support.
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that incomplete taxa can be placed correctly in phylogenies (based
on simulations with a known true topology or based on concor-
dance with other empirical studies), when sufficient characters
have been sampled overall (review in Wiens and Morrill, 2011).
Some studies have also shown that adding incomplete taxa can
improve the accuracy of estimated relationships among the com-
plete taxa (by breaking up long branches), using both simulated
data (Wiens, 2005) and empirical data (Wiens and Tiu, 2012;
Roure et al., 2013). In other words, adding incomplete taxa can
potentially have similar benefits to adding complete taxa in these
cases.

Far fewer studies have addressed the costs and benefits of add-
ing characters with missing data. In a simulation study, Wiens
(1998) found that for parsimony analyses adding incomplete char-
acters was often beneficial, but became less beneficial with a
greater proportion of missing data. Although this study found little
evidence that adding characters with missing data generally
decreased accuracy, it also showed that some patterns of missing
data could create a problem of long-branch attraction among the
species with non-missing data. Lemmon et al. (2009) analyzed
simulations of the 4-taxon case and suggested that missing data
could cause misleading results in Bayesian analyses with missing
data in 2 of 4 taxa, especially when combining data from genes
with very low rates of change (approaching invariant data) and
very high rates (effectively randomized data). Wiens and Morrill
(2011) found that in simulations utilizing rates and numbers of
taxa more typical of empirical phylogenetic studies, adding charac-
ters with missing data tended to either increase or have little effect
on mean accuracy for Bayesian phylogenetics. However, all three of
these simulation studies were relatively simplistic. For example,
none explored more realistic situations with multiple genes where
gene topologies could potentially disagree. Nevertheless, discor-
dance among gene trees is pervasive in empirical multi-locus data-
sets (Rokas et al., 2003; Cranston et al., 2009), especially when the
underlying species topology includes one or more relatively short
branches (e.g., Wiens et al., 2008).

Thus, a critical but unresolved question for empirical systema-
tists is whether it is better to include or exclude genes that have
some missing data. Specifically, do the benefits of increasing the
number of genes outweigh the potential consequences of increas-
ing the overall amount of missing data? This question is particu-
larly relevant for short nodes that are difficult to resolve, nodes
which may require the addition of many genes to resolve (e.g.,
Rokas et al., 2003) but for which gene topologies are especially
likely to disagree (e.g., Wiens et al., 2008). Some empirical results
on this issue were obtained by Wiens et al. (2005) and Cho et al.
(2011), who both found that adding incomplete genes seemed to
give more well-supported results that were more consistent with
previous taxonomy and phylogenetic estimates (whereas exclud-
ing incomplete genes gave weaker support and/or relationships
inconsistent with previous taxonomy and phylogenetic hypothe-
ses). However, these authors did not perform detailed experiments
examining the impact of missing data in the added genes.

In this study, we use analyses of real datasets to explore the
consequences of including versus excluding genes with missing
data on the accuracy of concatenated likelihood analyses. We use
the similarity of the estimated trees to the phylogeny based on
the complete data as a proxy for accuracy (which we define as
the similarity of the estimated tree to the true phylogeny). We ana-
lyze data from yeast to represent datasets with many genes and
extensive genetic divergence among taxa (despite most taxa being
congeners in this case) and a dataset from plants representing
those with fewer genes and more limited genetic divergence
among taxa (despite many species being in different families).
We analyze these datasets to address the following questions: (1)
is accuracy of concatenated likelihood analyses increased or
decreased by adding genes with missing data? (2) If adding genes
with missing data is beneficial, is there a proportion of missing
data at which adding these incomplete genes ceases to be useful?
(3) If adding genes with missing data is detrimental, at what pro-
portion of missing data does this occur? (4) How do the advantages
and disadvantages of adding incomplete genes change with the
overall number of genes in the analysis?

We also test for potential biases in branch length estimation
caused by including versus excluding genes with missing data.
Accurate branch-length estimates may be critically important for
phylogenetic comparative analyses and for divergence-date esti-
mation. Some authors have suggested that missing data can lead
to strongly biased and inaccurate estimates of branch lengths
(i.e., Lemmon et al., 2009), whereas other authors have suggested
that those results may have been artifacts of the methods used
by those authors (e.g., Wiens and Morrill, 2011; Roure et al.,
2013). At least two recent studies have tested for biases in
branch-length estimation caused by missing data in empirical
datasets, and found no evidence for such biases (Pyron et al.,
2011; Wiens and Tiu, 2012). Here, we explicitly contrast the
impacts of including versus excluding genes with missing data
on branch-length estimation, comparing these estimated branch
lengths to those from the complete datasets with all sampled
genes.

2. Materials and methods

2.1. Yeast data

2.1.1. Basic information on the yeast dataset
We selected an empirical dataset consisting of 8 yeast species

(Rokas et al., 2003) and 106 orthologous genes. The dataset
includes seven species of Saccharomyces, with a more distant rela-
tive (Candida albicans) included as an outgroup. There are very few
missing data in the original data set (only 0.0063%). Separate anal-
yses of each gene revealed considerable discordance among the
estimated gene trees (Rokas et al., 2003). However, combining all
genes yielded a single tree with 100% likelihood bootstrap values
at every branch (Fig. 1; Rokas et al., 2003). The same topology
was also found using a coalescent-based species-tree approach
(BEST; Edwards et al., 2007). Therefore, we assumed that this tree
reflects the true phylogenetic relationships among these eight
species.

2.1.2. Design of missing data experiments
The overall design of the yeast experiments was as follows.

First, we estimated a phylogeny for the complete data (106 genes).
We then created smaller datasets by randomly sampling smaller
numbers of genes (5, 10, 20, and 50), creating 100 new data matri-
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ces (replicates) for each level of sampling. For each of these repli-
cates, we then created new data matrices with different amounts
of missing data, by replacing sequence data with missing data cells
for selected genes (incomplete genes hereafter). These genes were
made incomplete by randomly selecting certain taxa to have all
their data for that gene replaced by missing data cells. We then
created another set of matrices in which all the incomplete genes
were excluded. For a given set of conditions, we then analyzed
these matrices with maximum likelihood and compared the trees
to the tree based on all 106 genes with no missing data. Specifi-
cally, we evaluated whether trees were more accurate (more sim-
ilar to the tree from 106 genes) when they included some genes
with missing data or had fewer genes but with no missing data.
For example, one set of conditions would be based on a sample
of 5 genes, of which 3 were selected to be incomplete, and these
3 incomplete genes would be made incomplete by replacing the
sequencing data with missing data for 4 of the 8 species. We would
then analyze the data matrices based on all 5 genes (including 3
with missing data) and also the data matrices with these three
incomplete genes excluded (i.e. data matrices containing only 2
genes, with no missing data). The results for each set of conditions
were based on the average results from 100 replicate matrices.

More specifically, we subsampled datasets with different num-
ber of genes (5, 10, 20, and 50), with genes randomly sampled
without replacement from the total pool of 106 genes to yield each
8-taxon concatenated data matrix. Then, we replaced the data for
selected genes in selected taxa to make different proportions of
genes with missing data (20%, 40%, 60% and 80%) in the concate-
nated data matrices. Thus, given a total sample of 5 genes, either
1, 2, 3, or 4 genes would have missing data, given 10 genes, 2, 4,
6, or 8 genes would be incomplete, given 20 genes, 4, 8, 12, and
16 genes would be incomplete, and given 50 genes, 10, 20, 30, or
40 genes would be incomplete. These incomplete genes were ran-
domly chosen from among those in the subsampled datasets. Then,
for each gene that was selected to be incomplete, the gene was
made incomplete by selecting different numbers of species to have
missing data (2, 4, 6, and 7 species out of a total of 8). Thus, for each
incomplete gene, �25%, �50%, �75%, or �87.5% missing data were
introduced. The total amount of missing data in each matrix is
therefore based on both the number of incomplete genes and the
number of species with missing data in each gene. Species were
randomly selected to have missing data, and sequences of these
randomly selected species were entirely replaced by ‘‘?’’. During
this process, we ensured that no species and no genes were com-
pletely replaced by missing data in the subsampled datasets; a
gene with all missing data should be uninformative, and a species
with all missing data cannot be placed in a phylogenetic analysis.

In the analyses described above, each incomplete gene had
missing data in different, randomly selected taxa (as might occur
when data are missing due to problems in obtaining sequence
data). We also performed a limited set of analyses in which the
same set of species had missing data across all incomplete genes
(as might occur when assembling a supermatrix with data from
previous studies with different sampling strategies), in order to
evaluate whether these different distributions impact the results.
The set of species lacking missing data across genes was randomly
selected in each replicate. For these analyses, we analyzed condi-
tions in which 50% of the species were incomplete (4 species with
missing data), with few genes and many genes (10, 50), and in
which 20% and 80% of the genes were incomplete. These analyses
were not comprehensive, but were intended to represent a broad
range of the overall conditions examined.

Finally, for the main analyses, we also evaluated how including
versus excluding genes with missing data influenced estimates of
branch lengths. Three different maximum likelihood trees were
estimated for each set of conditions and each replicate (the
complete data for a sample of genes, the analysis including genes
with missing data, and the analysis excluding those genes with
missing data). For each tree, we averaged the likelihood-estimated
lengths of all branches to estimate the mean branch length for that
tree. We then compared the mean branch lengths among the three
classes of trees across the 100 replicates for each set of conditions.
We tested for significant differences among these classes using
ANOVA in SPSS 16.0. We note that this analysis specifically tests
whether missing data consistently bias the estimates of branch
lengths (e.g., consistently shorter or longer branch lengths given
more missing data).

2.1.3. Assessment of accuracy
We estimated likelihood trees for: (1) the complete, subsam-

pled datasets with 5, 10, 20, and 50 genes, (2) the subsampled
datasets including genes with missing data, and (3) the subsam-
pled datasets after excluding genes with missing data (see below
for details of these analyses). We then compared these estimated
trees to the ‘‘true’’ tree based on all 106 genes. This design allowed
us to evaluate whether accuracy was increased by including or
excluding genes with missing data.

In order to evaluate the effects of including or excluding genes
with missing data, we used the ratio of the accuracy (proportion of
correctly resolved nodes relative to the total number of nodes) of
trees estimated from data matrices including incomplete genes
(IA) to the accuracy of trees estimated from data matrices exclud-
ing those incomplete genes (EA). When this ratio is >1 the accuracy
of trees from data matrices including incomplete genes is higher
than that excluding incomplete genes. When the ratio equals 1,
the trees from data matrices with and without missing data have
equal accuracy. When the ratio is <1 the accuracy of trees from
data matrices with missing data is lower than data matrices
excluding incomplete genes. Estimated trees were fully resolved,
and so each node was either correct or incorrect (in comparison
to the ‘‘true’’ tree based on all the data).

Each treatment was repeated 100 times (i.e., 100 random subs-
amples of genes, each with a different random selection of genes
and species that were incomplete). For a given set of conditions,
accuracy was measured as the proportion of nodes in common
between estimated trees and the concatenated tree of 106 genes,
averaged across the 100 replicates for a given set of conditions.
We first investigated accuracy across all five nodes and then con-
sidered accuracy for two difficult nodes (nodes 1 and 3 in Fig. 1;
for evidence of their difficulty see Rokas et al., 2003). As an alterna-
tive measure of accuracy, we also estimated the percentage of rep-
licates in which each method (including vs. excluding incomplete
genes) estimated a topology that fully matched the correct topol-
ogy based on all the data.

2.1.4. Maximum likelihood tree estimation
Choosing an appropriate partitioning scheme is an important

issue in phylogenetic analysis (e.g., Lanfear et al., 2012). Further-
more, some evidence suggests that inaccurate results may be
obtained from the combination of missing data and failure to par-
tition (e.g., Lemmon et al., 2009). Therefore, prior to conducting the
main analyses of our study (see above), we conducted a separate
set of analyses designed to compare 4 different partitioning
schemes: (1) no partitions, (2) partitioned by gene, (3) partitioned
by codon position and (4) partitioned by gene and codon position.
We used these analyses to both test for potential interactions
between partitioning and missing data on accuracy and to evaluate
partitioning strategies for subsequent analyses. We compared
these 4 partitioning strategies in the following treatments: (1)
datasets including the minimum proportion of missing data (20%
of genes incomplete, with each incomplete gene containing 25%
missing data), (2) datasets including the maximum proportion of
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missing data (80% of genes incomplete, each incomplete gene with
87.5% of missing data), and (3) datasets excluding these incomplete
genes. Each treatment was repeated 100 times for each partition-
ing scheme.

We first compared only the topologies estimated from each
treatment. We found that the estimated topology varied among
partitioning schemes in some replicates, depending on the treat-
ments (Table S1). Topologies differed among partitioning schemes
more often given fewer genes and more missing data, but patterns
were similar regardless of whether the incomplete genes were
included or excluded (Table S1). We also found that failing to par-
tition did not make the incomplete genes misleading, because the
results on the impact of including versus excluding incomplete
genes were similar under different partitioning schemes (Table S2).

To find the overall best partitioning scheme, we then held the
topology constant and compared the fit of the data under the dif-
ferent partitioning schemes. We first estimated a tree for the
106-gene concatenated matrix using each of the four partition
schemes. All four yielded the same topology (Fig. 1). We then cal-
culated the log likelihood of the data under each partitioning
scheme using RAxML 7.2.6 (and the fixed topology). The best par-
titioning scheme was selected by calculating and comparing the
Akaike information criterion (AIC; Akaike, 1974; Posada and
Buckley, 2004). Partitioning by gene and codon gave the lowest,
optimal AIC value (Table S3). But, as no partitioning was used in
the original likelihood analysis of Rokas et al. (2003), and because
we found that partitioning had little impact on our results regard-
ing missing data (Table S2), we used the unpartitioned scheme in
our main analyses. Furthermore, the unpartitioned analysis is (in
some ways) the most conservative for our analyses, since previous
studies (e.g., Lemmon et al., 2009) suggest that failing to partition
may increase the negative impacts of missing data.

Each data matrix was analyzed with maximum likelihood in
RAxML version 7.2.6 (Stamatakis, 2006; Stamatakis et al., 2008).
All RAxML analyses employed the GTR + C model (general time
reversible model with the gamma distribution of rates among
sites) and used the ‘‘f-a’’ option to conduct a rapid bootstrap anal-
ysis with 100 replicates combined with 20 searches for the optimal
tree. Note that the GTR model is the only substitution model used
in RAxML, and is the most general model of sequence evolution (all
Fig. 2. Maximum likelihood estimate of phylogeny for Rosales from analysis of a reduced
Bootstrap values are shown above branches. Focal nodes (for measuring accuracy) are i
other models are special cases of this model; Felsenstein, 2004).
We used the gamma model (and not the gamma + invariant sites
model) given that the large number of rate categories (25) used
during tree searches should effectively encompass the invariant
sites model.
2.2. Rosales data

2.2.1. Basic information on the Rosales dataset
We selected a multi-locus dataset from plants that included few

missing data and provided a well-resolved phylogeny. Zhang et al.
(2011) analyzed the phylogeny of Rosales with a total of 12 nuclear
and plastid genes. They sampled 25 ingroup species to represent all
nine families of Rosales and 13 outgroup species. Most family-level
relationships in Rosales estimated by Zhang et al. (2011) are con-
sistent with estimates from previous studies (e.g., Sytsma et al.,
2002; Wang et al., 2009). Specifically, Rosaceae is sister to all other
families in this order, and the other families are divided into two
clades: (Ulmaceae, (Cannabaceae, (Moraceae, Urticaceae))), and
(Rhamnaceae, (Elaeagnaceae, (Barbeyaceae, Dirachmaceae))). Our
goal was to subsample genes from this ‘‘complete’’ dataset and
introduce missing data experimentally. Therefore, to decrease
missing data in the complete dataset, we excluded 2 genes which
had missing data in more than 2 taxa (rps4 gene and 26S rDNA).
We also excluded 4 taxa because these taxa had missing data in
at least one gene (3 outgroup species: Anisophyllea fallax, Polygala
cruciata and Quillaja saponaria; and one ingroup species Dirachma
socotrana). After these deletions, only 1.05% missing data cells were
present (including gaps) in the full data matrix.

The new, complete data matrix (10 genes � 34 taxa, Fig. 2) was
then analyzed using maximum likelihood. In the complete, com-
bined-data tree (Fig. 2), the only species of Dirachmaceae was
excluded (see above), but the complete-data tree is otherwise
identical to that estimated by Zhang et al. (2011). Furthermore,
most of the relevant ingroup branches (nodes 1–7 and monophyly
of families; see below) have relatively high bootstrap support
(Fig. 2), with values of 100% for all nodes except node 7 (boot-
strap = 76%). Therefore, we used this phylogenetic tree as the refer-
ence tree for assessing accuracy.
data matrix containing 10 genes and 34 taxa (full dataset from Zhang et al., 2011).
ndicated below the branches.
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We also analyzed each gene separately using maximum likeli-
hood. However, psbBTNH consisted of four continuous genes and
was treated as single locus (Soltis et al., 2011). The results showed
discordance among the estimated gene trees (as in the yeast), espe-
cially over relationships between Moraceae, Urticaceae, and Can-
nabaceae and relationships between Elaeagnaceae and
Barbeyaceae (Fig. S1).

2.2.2. Design of missing data experiments
The experimental design for the Rosales data was similar to that

for the yeast. From the complete data matrix of 10 genes, we ran-
domly selected 2 genes, 4 genes, and 6 genes to be incomplete and
then separately introduced �15%, �30%, �60%, �90% missing data
into these genes. To generate these different amounts of missing
data, different numbers of taxa (5, 10, 20 and 30) were selected
to have missing data for a given gene. For these randomly selected
species, nucleotide sequence data were completely replaced by ‘‘?’’
for a given gene. During this process, we again ensured that no
gene or species had its data completely replaced with missing cells.

As for the yeast data, we also performed a limited set of analy-
ses in which the missing data cells were placed in the same taxa for
all incomplete genes, to compare to the main results (in which
incomplete species were randomly selected for each gene). Again,
one set of incomplete species was randomly selected for all incom-
plete genes in each replicate. We selected an intermediate set of
conditions to test (extensive missing data but not the maximum
missing data), focusing on the case in which 4 of 10 genes were
incomplete, with missing data in 20 of 34 taxa (�60%).

Finally, we tested whether missing data consistently bias esti-
mates of branch lengths in the Rosales data. We compared the
mean branch lengths for the tree with complete sampling of taxa
and characters to trees estimated with genes with missing data
included and excluded. Results were averaged across each set of
100 replicates and tested statistically using ANOVA.

2.2.3. Assessment of accuracy
All treatments were repeated 100 times. To test the impact of

including versus excluding incomplete genes, the same index
was used as above (ratio of mean accuracy of trees including and
excluding incomplete genes). We compared estimated trees from
subsampled data matrices with and without incomplete genes to
the concatenated tree from the full data matrix of 10 genes with
minimal missing data. Fourteen nodes of the concatenated tree
were investigated (Fig. 2): 7 nodes support the monophyly of fam-
ilies, and the other 7 resolve relationships among them. Among the
latter 7 nodes, the nodes relevant to relationships among Mora-
ceae, Urticaceae, and Cannabaceae (node 5) and relationships
among Rhamnaceae, Elaeagnaceae, and Barbeyaceae (node 7) were
deemed as difficult nodes because of short branch lengths and dis-
cordance among genes trees (reviews in Sytsma et al., 2002; Zhang
et al., 2011). Accuracy was estimated as the proportion of these 14
nodes shared between the estimated trees for the subsampled and
completed data matrices. Accuracy for the two difficult nodes (5
and 7) was also estimated and summarized separately. As with
the yeast data, an alternative approach for assessing accuracy
was also used: we estimated the percentage of replicates in which
each method (including vs. excluding incomplete genes) estimated
a topology that fully matched the correct topology based on all the
data.

2.2.4. Maximum likelihood tree estimation
The methods for likelihood analyses followed those described

above. Specifically, we used RAxML version 7.2.6 (Stamatakis,
2006; Stamatakis et al., 2008), with the GTR + C model and using
the ‘‘f-a’’ option to conduct a rapid bootstrap analysis with 100 rep-
licates combined with 20 searches for the optimal tree for each data
matrix. Prior to the main analyses, we also analyzed the complete
Rosales data matrix using the four partitioning schemes described
above. The tree topologies estimated from these partition schemes
were almost the same, except for the position of Dryas within Rosa-
ceae. The likelihoods and AIC for the four partitioning schemes were
then estimated and compared using the tree topology from the
unpartitioned analysis. The lowest AIC value was obtained from par-
titioning by both gene and codon (Table S3). However, we followed
the original authors (Zhang et al., 2011) and performed our main
analyses without partitions. Again, use of the unpartitioned analyses
should make our results more conservative with respect to the neg-
ative impacts of missing data.
3. Results

3.1. Yeast results

The impact of including versus excluding genes with missing
data depended on the amount of missing data (Fig. 3). Given
�25% missing data in the incomplete genes (missing data in 2 of
8 species), accuracy when including these genes was higher or
equal to the accuracy excluding these incomplete genes (Fig. 3a),
especially when 60% or 80% of the genes contain missing data and
when less than 50 genes are sampled overall. Given �50% missing
data in the incomplete genes (Fig. 3b), accuracy also often increased
when including the incomplete genes, especially when few genes
were sampled overall and the proportion of genes with missing
data was high. In contrast, including genes with �75% missing data
(missing data in 6 of 8 taxa) typically decreased accuracy compared
to data matrices excluding these genes (Fig. 3c), although these
decreases were consistently low (less than 2%). When there were
87.5% missing data in the incomplete genes (missing data in 7 of
8 taxa), adding these genes had little or no impact on accuracy
(Fig. 3d). The overall results were generally similar when missing
data were present in the same set of taxa across all incomplete
genes, relative to the main results in which the incomplete taxa
are randomly and independently selected for each gene (Table 1).

Accuracy was also analyzed separately for two difficult nodes
(Fig. 4). The effects of including and excluding incomplete genes
were consistent with the results for all nodes. However, adding
incomplete genes caused much larger increases in accuracy for
these less certain nodes (almost 30% in some cases; Fig. 4a) relative
to the positive impacts on the overall dataset (less than 15%;
Fig. 3), whereas the worst decreases associated with missing data
were still low (less than 5%; Fig. 4c).

These conclusions were based on comparisons of average accu-
racy across replicates (proportion of correctly resolved nodes). As
an alternative measure of accuracy, we also compared the percent-
age of replicates in which the estimated topologies matched the
‘‘true’’ topology (Table 2). Given �25% and �50% missing data in
the incomplete genes, including incomplete genes yielded the cor-
rect topology more frequently than excluding them did. In con-
trast, given �75% missing data, excluding the incomplete genes
yielded the correct topology more frequently.

Including genes with missing data generally had little or no
impact on mean branch lengths, both relative to analyses exclud-
ing these genes and relative to the complete datasets (Table 3).
With a small number of loci (5 or 10 genes) there were some cases
in which branch lengths were significantly longer when 80% of the
genes had missing data and were included. However, these differ-
ences were still relatively small. Moreover, these were also cases in
which excluding these genes also caused a similar, statistically sig-
nificant increase in branch lengths. Thus, excluding incomplete
genes did not appear to improve branch-length estimation relative
to including them.



Fig. 3. Impacts of including versus excluding incomplete genes on phylogenetic accuracy for concatenated maximum likelihood analysis of multi-locus data for 8 species of
yeast. Accuracy is based on all nodes. Ratios >1 indicate that including incomplete genes (IA) increases accuracy relative to excluding these genes (EA). Results are shown
separately for (a) �25%, (b) �50%, (c) �75%, and (d) 87.5% missing data in the incomplete genes in data matrices of four different sizes (total of 5, 10, 20, and 50 genes, when
all genes are included). The four symbols indicate results when 20%, 40%, 60%, and 80% of the genes contain missing data.

Table 1
Comparison of two different ways of distributing missing data on the accuracy of maximum likelihood analyses including and excluding genes with missing data, for both the
yeast and Rosales data. Missing data are either distributed in the same taxa across all incomplete genes, or else in a different set of randomly selected taxa for each gene. Most of
the results of the study are based on the latter approach. The results here show that patterns of accuracy are generally similar using both approaches.

Total number of
complete genes

Number of
incomplete genes

Distribution of missing data IA: Accuracy
including
incomplete genes (%)

EA: Accuracy
excluding
incomplete genes (%)

Ratio of
IA/EA

Yeast
10 Genes 2 Incomplete genes 4 Randomly selected taxa incomplete for all incomplete genes 99.0 99.4 0.9960

4 Incomplete taxa randomly selected for each incomplete gene 98.0 98.2 0.9980
8 Incomplete genes 4 Randomly selected taxa incomplete for all incomplete genes 87.8 84.3 1.0415

4 Incomplete taxa randomly selected for each incomplete gene 90.6 81.2 1.1158

50 Genes 10 Incomplete genes 4 Randomly selected taxa incomplete for all incomplete genes 100.0 100.0 1.0000
4 Incomplete taxa randomly selected for each incomplete gene 100.0 100.0 1.0000

40 Incomplete genes 4 Randomly selected taxa incomplete for all incomplete genes 98.0 99.2 0.9879
4 Incomplete taxa randomly selected for each incomplete gene 99.8 99.0 1.0081

Rosales
10 Genes 4 Incomplete genes 20 Randomly selected taxa incomplete for all incomplete genes 97.5 96.0 1.0156

20 Incomplete taxa randomly selected for each incomplete gene 98.5 96.1 1.0250
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3.2. Rosales results

For the Rosales data, including incomplete genes generally
increased accuracy relative to excluding them, both for all nodes
and for the two difficult nodes (Fig. 5). Overall, including genes
with missing data became much more beneficial than excluding
them when a higher proportion of genes were incomplete
(Fig. 5b and c). Conversely, there was less benefit to adding incom-



Fig. 4. Impacts of including versus excluding incomplete genes on phylogenetic accuracy for concatenated maximum likelihood analysis of multi-locus data for 8 species of
yeast. Accuracy is based on nodes 1 and 3 only (Fig. 1). Ratios >1 indicate that including incomplete genes (IA) increases accuracy relative to excluding these genes (EA). Results
are shown separately for (a) �25%, (b) �50%, (c) �75% and (d) 87.5% missing data in the incomplete genes in data matrices of four different sizes (total of 5, 10, 20, and 50
genes, when all genes are included). The four symbols indicate results with 20%, 40%, 60%, and 80% of the genes containing missing data.

314 W. Jiang et al. / Molecular Phylogenetics and Evolution 80 (2014) 308–318
plete genes when relatively few of these genes were added
(Fig. 5a), and when the genes that were added contained extensive
missing data. The positive impacts of including genes with missing
data were much stronger when considering only the two more dif-
ficult nodes (Fig. 5b and c). Different ways of distributing missing
data cells appeared to have little impact on the results: results
were similar when missing data were present in the same set of
taxa across all incomplete genes, relative to the main analyses in
which incomplete taxa were independently selected for each gene
(Table 1). We also compared the number of replicates in which
correct trees were estimated in the two treatments (with
incomplete genes and without incomplete genes). We found that
including incomplete genes yielded the correct topology more fre-
quently than excluding them did under all conditions, although the
numbers become more similar given fewer incomplete genes or
more missing data per incomplete gene (Table 4). Comparison of
mean branch lengths showed no significant differences between
branch lengths based on the complete data and branch lengths
estimated from datasets including incomplete genes (Table 5).
However, there is a trend for mean branch lengths to be somewhat
shorter with extensive missing data in these datasets, relative to
the complete dataset and relative to analyses excluding these
genes.
4. Discussion

Our study addresses a common question in phylogenetic analy-
ses: should more genes be added to an analysis, even when these
genes are missing data for some taxa? This question is likely to
be encountered in almost every empirical phylogenetic study,
and especially those using supermatrices or RAD sequence data
(e.g., Rubin et al., 2012). However, relatively few studies have
tested the potential impacts of adding genes with missing data
on phylogenetic accuracy (e.g., Wiens, 1998; Wiens et al., 2005;
Lemmon et al., 2009; Cho et al., 2011). Here, we address this ques-
tion with experimental empirical analyses in two clades (yeast,
Rosales). Overall, our results suggest that adding genes with some
missing data seems to increase accuracy of concatenated likelihood
analyses under many conditions, and only causes slight decreases
under others. Interestingly, the distribution of missing data is crit-
ically important. Adding many genes with small amounts of miss-
ing data can dramatically increase accuracy relative to excluding
these genes (despite the fact that these matrices have many miss-
ing data cells overall; Figs. 3a and b and 4a and b). On the other
hand, when many taxa are missing data in the incomplete genes
(i.e., 6 of 8 in yeast), adding many incomplete genes or few incom-
plete genes can both cause slight decreases in accuracy (Figs. 3c
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and 4c). These results are broadly concordant with simulation
results focusing on a smaller number of characters and using par-
simony (Wiens, 1998). They also support previous empirical stud-
ies using model-based analyses of molecular data, suggesting that
adding incomplete genes can improve support and congruence,
despite their missing data (e.g., Wiens et al., 2005; Cho et al., 2011).

In yeast, we found some conditions under which there was a
decrease in accuracy. However, these decreases were typically
small. Most importantly, these involved cases where only 2 species
had non-missing data (Figs. 3c and 4c). Under these conditions,
there is no a priori reason to expect the added genes to contribute
positively to the analyses. It appears that the particular percentage
of missing data is not actually problematic. For example, in Rosales,
genes with >90% missing data still cause an average increase in
accuracy, even though the increase is slight (Fig. 5). Nevertheless,
an important question is why the missing data should cause
decreases at all. It makes intuitive sense that there may be issues
of long-branch attraction when few taxa have non-missing data
(e.g., Wiens, 1998), and this may explain some cases of slight
decreases when 4 of 8 taxa have non-missing data in incomplete
genes in yeast (Figs. 3b and 4b). However, this may not explain
the pattern when only 2 of 8 taxa have non-missing data. In this
case, it appears that these genes should have no impact on accu-
racy, as we find when 7 of 8 taxa have missing data (Figs. 3d and
4d). Nevertheless we find slight decreases in mean accuracy, even
when many genes are sampled overall (i.e., 50; Fig. 3c). These
results may be consistent with those of Lemmon et al. (2009),
who also found that adding seemingly uninformative genes with
extensive missing data might negatively impact accuracy. The
underlying cause is not entirely clear, but may be related to dis-
torted branch lengths or distorted parameter estimates (Lemmon
et al., 2009; Roure et al., 2013). However, this still begs the ques-
tion of why one would add such genes to a phylogenetic analysis
in the first place, given that there is no reason to expect them to
contribute positively. Clearly, the easiest solution is to simply not
add such characters. This solution makes the question of why
exactly this happens of limited practical interest.

We also looked at a question that few authors have addressed
before: how does the inclusion versus exclusion of incomplete
genes impact poorly resolved nodes in particular? We found that
the impacts on poorly supported nodes mirrored those for the
overall data set, but were generally more dramatic. Thus, for the
yeast data, increases in accuracy from including incomplete genes
were generally greater for the poorly supported nodes under those
conditions where adding incomplete genes increased accuracy
(Figs. 3 and 4). Conversely, the decreases were greater for those
conditions under which there were decreases. But again, the
decreases were never >5% and increases could be >20% (on aver-
age). Similarly, for the Rosales data (in which adding incomplete
genes only increased or had no effect on mean accuracy), increases
in accuracy were dramatically higher when considering the two
poorly resolved nodes only (Fig. 5). An obvious interpretation of
these results is that these poorly resolved nodes are the ones most
likely to be impacted either positively or negatively by the inclu-
sion or exclusion of genes with missing data (other branches are
simply unchanged, one way or the other). These results for poorly
resolved nodes further confirm our general conclusions that (at
least for these datasets) adding incomplete genes tends to either
increase accuracy or else have a negligible impact on accuracy
(whether positive, negative, or none).

Our results also address how missing data impact branch length
estimation. Overall, we find little evidence that missing data
strongly bias these estimates. For the yeast data, branch lengths
were sometimes significantly longer when genes with missing data
were included (i.e. when few genes were sampled overall and
missing data were extensive; Table 3). However, excluding the



Fig. 5. Impacts of including versus excluding incomplete genes on the accuracy of concatenated maximum likelihood analysis for 10 nuclear and plastid genes from Rosales,
with accuracy analyzed for all 14 nodes (h) and two difficult nodes only: nodes 5 and 7 (N) in Fig. 2. Ratios >1 indicate that including incomplete genes (IA) increases accuracy
relative to excluding these genes (EA). The x-axis shows four different levels of missing data (�15%, �30%, �60%, and 90%) in the data matrices. Each point is the average from
100 replicates. Results are shown separately when (a) 2, (b) 4, and (c) 6 of the 10 genes are incomplete.

Table 3
Comparison (for the yeast data) of mean branch lengths (across all branches in each tree) averaged across all 100 replicates for each set of conditions, with branch lengths from
trees from the complete data, from those including the incomplete genes (I), and from those excluding these genes (E).

5 Genes 10 Genes

Proportion
incomplete genes

Missing
data (%)

Branch length
(complete data)

Branch
length (I)

Branch
length (E)

Missing
data (%)

Branch length
(complete data)

Branch
length (I)

Branch
length (E)

20% Incomplete genes 25 0.2207 0.2202 0.2236 24.93 0.2193 0.2183 0.2164
50 0.2325 0.2328 0.2370 49.64 0.2235 0.2237 0.2243
75 0.2234 0.2229 0.2231 75.18 0.2158 0.2196 0.2187
87.5 0.2306 0.2340 0.2340 87.5 0.2235 0.2251 0.2251

40% Incomplete genes 24.63 0.2330 0.2344 0.2486 24.88 0.2174 0.2182 0.2162
50.23 0.2390 0.2470 0.2476 50.43 0.2199 0.2210 0.2315
75.26 0.2225 0.2249 0.2269 75.04 0.2217 0.2267 0.2277
87.5 0.2299 0.2491 0.2491 87.5 0.2213 0.2222 0.2222

60% Incomplete genes 24.9 0.2177 0.2244 0.2451* 25.09 0.2174 0.2187 0.2336*

50.04 0.2142 0.2145 0.2187 50.05 0.2209 0.2184 0.2270
75.09 0.2228 0.2360 0.2371 74.75 0.2214 0.2250 0.2329
87.5 0.2264 0.2283 0.2287 87.5 0.2258 0.2276 0.2276

80% Incomplete genes 25.29 0.2305 0.2264 0.2597* 24.86 0.2196 0.2234 0.2495*

49.61 0.2294 0.2368 0.2590* 49.88 0.2198 0.2129 0.2341
74.76 0.2247 0.2641* 0.2843* 75.13 0.2158 0.2313 0.2418*

87.5 0.2244 0.2798* 0.2803* 87.5 0.2236 0.2543* 0.2554*

20 Genes 50 Genes
20% Incomplete genes 25.23 0.2185 0.2187 0.2202 24.86 0.2152 0.2145 0.2162

50.12 0.2157 0.2145 0.2174 49.58 0.2155 0.2149 0.2152
75.08 0.2131 0.2148 0.2152 75.04 0.2143 0.2134 0.2137
87.5 0.2131 0.2141 0.2141 87.5 0.2149 0.2143 0.2143

40% Incomplete genes 24.93 0.2123 0.2118 0.2151 25.07 0.2147 0.2135 0.2170
50.07 0.2173 0.2178 0.2210 50.2 0.2138 0.2159 0.2182
74.67 0.2168 0.2184 0.2194 74.46 0.2099 0.2059 0.2043*

87.5 0.2166 0.2145 0.2145 87.5 0.2147 0.2152 0.2152

60% Incomplete genes 24.83 0.2176 0.2156 0.2262 25.03 0.2154 0.2136 0.2208
50.22 0.2177 0.2168 0.2239 50.29 0.2159 0.2164 0.2188
75.25 0.2180 0.2217 0.2242 74.97 0.2154 0.2192 0.2208
87.5 0.2139 0.2215 0.2218 87.5 0.2136 0.2173 0.2175

80% Incomplete genes 25.08 0.2167 0.2135 0.2322* 24.93 0.2159 0.2127 0.2119
49.92 0.2151 0.2115 0.2242 50.15 0.2142 0.2154 0.2232*

74.8 0.2149 0.2245 0.2248 75.07 0.2159 0.2152 0.2119
87.5 0.2141 0.2227 0.2238 87.5 0.2140 0.2190 0.2200

* Mean branch lengths that differ significantly from the branch lengths for the complete data under these conditions.
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incomplete genes under these conditions actually led to signifi-
cantly longer branch lengths more frequently (Table 3). For the
Rosales data, branch lengths were not significantly different from
the complete data when genes with missing data were included,
although there did appear to be a non-significant trend for mean
branch lengths to be somewhat underestimated given extensive
missing data. These results are consistent with other empirical
studies in showing no consistent, significant biases in estimated
branch lengths from data matrices with extensive missing data
(e.g. Pyron et al., 2011; Wiens and Tiu, 2012). Nevertheless, further
study of this issue would be desirable. We also acknowledge that
this lack of consistent bias does not guarantee that branch lengths
will be correctly estimated in each case (e.g., underestimates and
overestimates may balance each other out across different
branches on the tree and/or across different replicates, leading to
no significant bias in one direction or the other).



Table 5
Comparison (for the Rosales data) of mean branch lengths (across all branches in each tree) averaged across all 100 replicates for each set of conditions, including trees from the
complete data, including the incomplete genes with missing data, and excluding these genes.

Number of incomplete genes Missing data (%) Branch length
(complete data)

Branch length
(including incomplete genes)

Branch length
(excluding incomplete genes)

2 Incomplete genes 18.43 0.01814 0.01808 0.01838
32.67 0.01814 0.01795 0.01788
62.46 0.01814 0.01793 0.01833
91.17 0.01814 0.01784 0.01804

4 Incomplete genes 16.49 0.01814 0.01798 0.01806
30.93 0.01814 0.01780 0.01795
59.88 0.01814 0.01756 0.01850
89.23 0.01814 0.01782 0.01858

6 Incomplete genes 15.65 0.01814 0.01790 0.01898
30.56 0.01814 0.01763 0.01745
59.62 0.01814 0.01694 0.01808
88.52 0.01814 0.01690 0.01772

Table 4
Percent replicates (out of 100) in which the estimated topology is the ‘‘true’’ topology, both including incomplete genes and excluding incomplete genes, using the data from
Rosales.

Number of incomplete genes Percent missing data (%) Percent replicates estimating correct
tree (including incomplete genes)

Percent replicates estimating correct
tree (excluding incomplete genes)

2 Incomplete genes 18.43 100 88
32.67 99 86
62.46 97 88
91.17 91 87

4 Incomplete genes 16.49 98 62
30.93 89 53
59.88 81 59
89.23 63 62

6 Incomplete genes 15.65 94 11
30.56 84 11
59.62 40 16
88.52 8 6
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We think that our results provide useful insights on an impor-
tant and widespread issue in phylogenetics. Nevertheless, our
study also has several limitations that should be mentioned. First,
because we are using empirical data sets from the natural world,
the true phylogenies of these groups are not actually known. How-
ever, it seems reasonable that deviations from the tree based on
the complete data most likely represent errors, and this general
approach of treating the tree from the complete data as correct is
widely used in other studies of missing data (e.g., Philippe et al.,
2004; Fulton and Strobeck, 2006; Burleigh et al., 2009; Rubin
et al., 2012; Wiens and Tiu, 2012; Roure et al., 2013). Furthermore,
our results are broadly concordant with those from simulations.
Second, a similar issue with empirical data sets is that it is gener-
ally not possible to examine the full range of conditions that can
potentially be encountered in other empirical data sets. Third, we
acknowledge that our results are based on only two datasets, and
very different results might be obtained in other empirical studies.
However, similar results have been obtained in vertebrates (Wiens
et al., 2005) and insects (Cho et al., 2011). We also note that our
two datasets span very different sets of branch lengths, with rela-
tively long branches in yeast and shorter branches in Rosales.

Many other studies now suggest that data matrices with large
amounts of missing data are not generally misleading (e.g.,
Wiens and Morrill, 2011; Rubin et al., 2012; Roure et al., 2013),
even if they did not examine the costs and benefits of adding genes
with missing data as we did. Nevertheless, additional studies of
this question would still be useful. In general, we predict that the
greatest benefits to including genes with missing data will be seen
when trees are poorly supported due to a paucity of genes being
sampled, and when the genes added have enough non-missing
data to at least be informative (>3 taxa). We expect greater benefits
from adding genes with less missing data, even though adding
many incomplete genes may lead to including large amounts of
missing data overall. Clearly, the added genes should also have
similar (or higher) levels of phylogenetic information, and equal
or lesser homoplasy (i.e., adding incomplete genes may not be
helpful if the added genes are problematic for other reasons
besides their missing data).

We also emphasize that there are several related questions that
should also be addressed in future studies. We focused only on
concatenated analyses, and many analyses now estimate trees
from multi-locus data using explicit species-tree methods (e.g.,
Edwards et al., 2007; Heled and Drummond, 2010). More studies
on the impact of missing data on species-tree methods are needed
(e.g., Hovmöller et al., 2013), especially the question of whether to
include or exclude genes with missing data. Even for concatenated
analyses, analyses of the impacts of missing data on estimates of
branch support (e.g., bootstrapping, Bayesian posterior probabili-
ties) are also needed (e.g., de la Torre-Bárcena et al., 2009). The
impacts of including vs. excluding genes with missing data should
also be tested for methods for estimating divergence dates (e.g., the
Bayesian uncorrelated lognormal approach in BEAST; Drummond
et al., 2006).

Finally, a critically important point that should be noted from
our study is that, based on our results, excluding genes with miss-
ing data can potentially lead to less accurate phylogenies than can
be obtained from including these characters. In fact, these
decreases from excluding these incomplete genes appear to be
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both more common and of greater impact than potential increases
from excluding them. Therefore, we see no basis for treating the
exclusion of genes with missing data as a necessarily safer or more
conservative approach. We see no argument for why an approach
that seems to decrease accuracy under realistic conditions should
be considered safer or more conservative.
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