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1  | INTRODUC TION

Fighting with conspecifics over access to limited resources (e.g. 
mates, food, or shelter) has been documented in numerous animal 
species (Rico-Guevara & Hurme, 2019; Smith & Price, 1973; West-
Eberhard, 1983). For example, almost half of the sexually selected 
traits found in animals are estimated to function in male–male com-
petition (Wiens & Tuschhoff, 2020). When individuals of the same 

species compete, fighting often continues until a contestant with-
draws. Thus, theoretical studies have modelled the factors that 
determine an individual's willingness to persist in a fight (Enquist 
& Leimar, 1983; Hammerstein & Parker, 1982; Mesterton-Gibbons 
et al., 1996; Parker & Rubenstein, 1981; Payne, 1998; Payne & 
Pagel, 1996). These theoretical models can be categorized into 
one of three groups: pure self-assessment models, cumulative as-
sessment models, or mutual assessment models (Arnott & Elwood, 
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Abstract
1. In many animal species, individuals engage in fights with conspecifics over access  

to limited resources (e.g. mates, food, or shelter). Most theory about these in-
traspecific fights assumes that damage has an important role in determining the 
contest winner. Thus, defensive structures that reduce the amount of damage 
an individual accrues during intraspecific competition should provide a fighting 
advantage.

2. Examples of such damage-reducing structures include the dermal shields of goats, 
the dorsal osteoderms of crocodiles, and the armoured telsons of mantis shrimps. 
Although numerous studies have identified these defensive structures, no study 
has investigated whether they influence the outcomes of intraspecific fights.

3. Here we investigated whether inhibiting damage by enhancing an individual's ar-
mour influenced fighting behaviour and success in the giant mesquite bug, Thasus 
neocalifornicus (Insecta: Hemiptera: Coreidae).

4. We found that experimentally manipulated individuals (i.e. those provided with 
additional armour) were 1.6 times more likely to win a fight when compared to the 
control. These results demonstrate that damage, and damage-reducing structures, 
can influence fighting success.

5. The implications of these results are twofold. First, our results experimentally 
support a fundamental assumption of most theoretical fighting models: that dam-
age is a fighting cost that can influence contest outcomes. Second, these results 
highlight the importance of an individual's defensive capacity, and why defence 
should not be ignored.
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2009). Both cumulative and mutual assessment models assume 
that the costs contestants can inflict onto one another are import-
ant factors in determining whether an individual should persist 
(Enquist & Leimar, 1983; Hammerstein & Parker, 1982; Parker & 
Rubenstein, 1981; Payne, 1998). Thus, under these models, injury 
should influence contest outcomes. There is correlative evidence to 
support this assumption (e.g. Moore et al., 2008; Neat et al., 1998). 
However, no study has experimentally tested whether injury itself 
actually influences fighting success.

There are two main factors that determine injury potential 
during fights. The factor that has received the most attention is 
an individual's offensive capacity. Traits that contribute to a com-
petitor's offensive capacity include body size (Enquist et al., 1990; 
Leimar et al., 1991), weaponry (Bean & Cook, 2001), and skill (Briffa 
& Lane, 2017). For example, when Frontinella pyramitela spiders fight 
for a high-value resource, larger individuals are more likely to win 
and injure their rival while doing so (Leimar et al., 1991). Similarly, 
Sycoscapter wasps with larger weapons inflict more damage (Bean & 
Cook, 2001), and the individual with the largest weapon is the most 
likely to win (Moore et al., 2008).

In addition to offensive capacity, another important factor that 
determines the potential for injury is an individual's defensive capacity 
(Palaoro & Briffa, 2017). One way that individuals can increase their 
defensive capacity is through structures that reduce damage (Figure 1; 
Table 1). Examples include neck cornification in elephant seals (Le 
Boeuf, 1974), the head dorsal convexity on hogbacked fig wasps 
(Murray, 1990), and the enlarged osteoderms of Cape cliff lizards 
(Broeckhoven et al., 2017). The latter example highlights that armour 
traits classically associated with evading predation (i.e. osteoderms; 
Broeckhoven et al., 2015) may also serve a functional role in intra-
specific fights (Broeckhoven et al., 2017). Although numerous stud-
ies have identified these intraspecific, defensive structures (Figure 1; 
Table 1), no study has investigated the degree to which they influence 
contest outcomes.

Here we investigate whether inhibiting damage by enhancing 
an individual's armour influences fighting behaviour and success in 
the giant mesquite bug, Thasus neocalifornicus (Insecta: Hemiptera: 

Coreidae). Males of several coreid species engage in intrasexual 
combat over access to females and resources (Eberhard, 1998; 
Miller & Emlen, 2010; Mitchell, 1980; Procter et al., 2012; Tatarnic 
& Spence, 2013). All coreid species that are known to participate in 
these fights have hind legs with enlarged femurs and spines, includ-
ing T. neocalifornicus (Graham et al., 2020). Our observations indi-
cate that when male T. neocalifornicus engage in fights they place 
these spines onto the forewings of their rivals (Video S1 and S2 in 
Supporting Information). This placement results in observable dam-
age to the forewing (Figure S1). Such damage appears to be costly, 
based on the melanization observed around the wounds (Figure S1). 
This pattern of melanization in insects is indicative of an immune 
response, which can be metabolically expensive (Ardia et al., 2012; 
Cerenius & Söderhäll, 2004). Moreover, wing damage in other in-
sects has been shown to reduce flying ability (Combes et al., 2010; 
Mountcastle et al., 2016). Thus, the damage from these fights may 
have consequences for an individual's ability to successfully flee from 
predators and find mates.

Male Thasus neocalifornicus also appear to have a defence 
against forewing damage. Our preliminary observations suggest 
that forewing thickness of male T. neocalifornicus is positively al-
lometric, and that male forewings are generally thicker than the 
forewings of similarly sized females (Figure S2). These patterns in-
dicate that the forewings of males, and especially those of larger 
males, could potentially be harder to puncture. Thus, additional 
wing thickness may serve as a biological shield to prevent damage 
during intrasexual fights.

In this study, we experimentally enhanced the forewing thick-
ness of Thasus neocalifornicus. We predicted that experimen-
tally enhancing this potential intrasexual shield would provide 
males with a fighting advantage. We further predicted that these 
shields would provide an advantage by enabling individuals to 
persist in fights longer, increasing the overall length of the fight. 
This study provides the first experimental test of a fundamen-
tal assumption included in most theoretical fighting models: that 
damage (and defence against that damage) helps determine the 
contest winner.

F I G U R E  1   Photographs of animals thought to have defensive structures associated with intraspecific combat. From left to right: Alligator 
mississippiensis (dorsal osteoderms and scutes), Tarentola mauritanica (osteoderms), Aepyceros melampus (dermal thickening around the head, 
neck and shoulders), and Thasus neocalifornicus (forewing thickening). See Table 1 for references and additional examples. Photo credits: first 
three on the left: John J. Wiens; right: Zachary Emberts
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2  | MATERIAL S AND METHODS

2.1 | Specimens

Adult male Thasus neocalifornicus used for this study were collected 
from the University of Arizona Santa Rita Experimental Range (31.7921, 
−110.8813). All individuals were collected by hand on one of 6 days be-
tween the 15th and 31st of July, 2020. This timeframe was selected 
because iNaturalist observations suggested that adult T. neocalifornicus 
could easily be found during this month (as well as August and September). 
Before experimental trials, collected individuals were housed in one 
of six mesh insect rearing containers (305 mm × 305 mm × 607 mm; 
L × W × H; with up to 25 individuals per container). Individuals were 
provided with fresh cuttings of velvet mesquite (Prosopis velutina) for 
food. Cuttings were replaced at least every 24 hr. These large insect 

containers were kept inside at room temperature (26°C), a temperature 
at which males move slowly and do not seem to fight. This was done 
to prevent males from engaging in behaviours in the holding containers 
that could have potentially influenced their fighting behaviour later on. 
Before experimentation, each individual was also marked with a unique 
identifying number (using paint pens and permanent markers; Figure 2) 
and had their pronotal width measured to the nearest micrometre using 
a Mitutoyo digital caliper. Pronotal width is a widely used proxy for body 
size in this clade (Emberts et al., 2020; Procter et al., 2012).

2.2 | Experimental design

Pairs of individuals were selected to engage in fights. Paired individu-
als were always collected on the same day and had been in captivity 

TA B L E  1   Examples of non-weapon structures that are thought to reduce damage from accruing during intraspecific fights. This list was 
initially compiled by reading Jarman (1989) and conducting a forward citation search. We then added additional examples of defensive 
structures that we knew were referenced in the literature

Group Defensive structure Species Reference

Vertebrates

Crocodilians Scutes and osteoderms Alligator mississippiensis, Caiman crocodilus, Ca. yacare, 
Crocodylus niloticus, Cr. porosus, Paleosuchus trigonatus

English (2018a, 2018b)

Mammals

Antilocapridae (pronghorns) Dermal thickening Antilocapra americana Jarman (1989)

Bovidae (Bovids) Dermal thickening Aepyceros melampus, Connochaetes taurinus, Damaliscus 
korrigum, Gazella granti, Oreamnos americanus, Ovis dalli, 
O. canadensis, Taurotragus oryx

Geist (1967, 1971) and 
Jarman (1972, 1989)

Camelidae (camels) Dermal thickening Camelus dromedarius Jarman (1989)

Giraffidae (giraffes) Dermal thickening Giraffa camelopardalis Sathar et al. (2010)

Hippopotamidae 
(hippopotamuses)

Dermal thickening Hippopotamus amphibius Jarman (1989)

Leporidae (rabbits & hares) Dermal thickening Oryctolagus cuniculus Jarman (1989)

Marsupiala (marsupials) Dermal thickening Aepyprymnus rufescens, Macropus fuliginosus, M. giganteus, 
M. robustus, M. rufus, Thylogale thetis, Vombatus ursinus

Jarman (1989)

Pinnipedia (pinnipeds) Neck cornification Mirounga augustirostris Le Boeuf (1974)

Rhinocerotidae (rhinoceros) Dermal thickening, 
increased strength and 
stiffness of skin

Ceratotherium simum Shadwick et al. (1992)

Suidae (pigs) Dermal thickening Sus scrofa Jarman (1989)

Tragulidae (mouse-deer) Dermal thickening Hyemoschus aquaticus Jarman (1989)

Squamata (lizards) Osteoderms Hemicordylus capensis, Tarentola americana, T. annularis, 
T. chazaliae, T. crombei, T. mauritanica, Gekko gecko, 
Hemicordylus capensis, Smaug depressus

Vickaryous et al. (2015) 
and Broeckhoven 
et al. (2017, 2018)

Arthropods

Agaonidae (fig wasps) Dorsal convexity, 
increased 
sclerotization of thorax

Eujacobsonia genalis, Lipothymus sundaicus, Otitesellinae 
sp.

Murray (1990)

Coreidae (leaf-footed bugs)  Forewing thickening Thasus neocalifornicus Figure S2

Stomatopoda (mantis shrimps) Telson Gonodactylaceus falcatus, G. espinosus, G. chiragra, 
G. smithii, Haptosquilla glyptocercus, H. trispinosa, 
Neogonodactylus bredini, N. festae, N. oerstedii,  
N. wennerae, Odontodactylus latirostris, O. scyllarus

Taylor and Patek (2010), 
Yaraghi et al. (2019) 
and Taylor et al. (2019)
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for at least 4 hr (but not more than 36 hr). Fighting pairs were size 
matched based on their pronotal widths (pronotal width difference 
of ≤0.1 mm). One individual per pair was then randomly assigned to 
be the focal individual using a random number generator. Once the 
focal individual was identified it was randomly placed (again, using a 
random number generator) into one of three treatments (n = 50 per 
treatment): (a) comparative baseline, (b) control, or (c) experimental 
manipulation. One benefit of this randomized design is that in the 
unlikely case that fighting did occur in the holding containers, the 
beneficiaries should be randomized among the treatments and focal 
males.

Focal individuals in the experimental manipulation treatment had a 
piece of additional armour attached to their forewings. This was done 
to block or reduce damage from fights. Specifically, each individual had 
a 12 mm × 16 mm × 1 mm piece of brown faux leather (100% poly-
ester) glued onto their forewings (Figure 2c), using non-toxic Elmer's 
Glue-All mutli-purpose glue. This faux leather was selected because it 
was light and because our previous observations indicated that it could 
withstand attacks from Thasus neocalifornicus. The specific dimensions 
were selected to ensure that a majority of the coria was covered: this 
is the thick and hardened part of the forewings, where punctures from 
fights normally occur (Figure S1; Video S1 and S2). Individuals in the 
control treatment had two 12 mm × 8 mm × 1 mm pieces of brown 
faux leather glued onto their pronotum (Figure 2b). Our observations 
indicate that damage from fights does not occur at this location. Thus, 
individuals in both treatments received the same amount of faux 
leather and glue, but the location of the armour differed. Individuals in 
the comparative baseline treatment were not provided with any addi-
tional armour (Figure 2a).

The additional weight added by the armour likely impeded the 
flying ability of individuals in both the control and manipulation 
treatments. This should not be problematic for this experiment be-
cause Thasus neocalifornicus males in the baseline treatment almost 

always left fights by walking or running away (as opposed to flying 
away; Videos S3 and S4). Moreover, our previous observations of 
fighting behaviour in other coreids suggest that walking or running 
away is the most common form of retreating.

After undergoing their respective manipulations, focal individ-
uals were placed into their fighting arenas. A fighting arena con-
sisted of a deli cup (top diameter: 118 mm, bottom diameter: 85 mm, 
height: 148 mm) that had its walls lined with petroleum jelly (to keep 
individuals from climbing out) and had a wooden dowel fixed in the 
middle (as a territory for individuals to fight over; diameter: 4.7 mm, 
height: 102 mm; Videos S1 and S2). This diameter was selected be-
cause it was approximately equivalent to the diameter of branches 
that adult males were collected on (e.g. Figure 1).

Thirty minutes after placing a focal individual in the arena, a rival 
individual (not provided with armour) was placed into the arena as 
well. Fighting trials began once the rival male was added and contin-
ued for the next 2 hr. Behavioural observations were made by two 
individuals and each observer was allowed to watch up to six trials 
concurrently. Observers were able to watch six trials concurrently 
for two reasons. First, fighting is fairly stereotypic in this species and 
thus, it is easy to determine when a fight is about to begin (e.g. fights 
often began once both individuals reached the top of the wooden 
dowel). Second, fights can occur for several minutes, but the lon-
gest fights only lasted about 10 min (i.e. only a fraction of the 2-hr 
observation period). All fighting trials occurred between 8a.m. and 
8p.m., and occurred outside in the shade. Air temperatures ranged 
from 34 to 41°C depending on the day and time. Time of trials and air 
temperatures were recorded and analysed as possible factors (see 
below).

Behavioural observations were noted during trials, including: 
(a) whether a fighting/dominance interaction occurred, (b) the du-
ration of that interaction, (c) whether a tibial spine clearly struck 
the focal individual's wings (or the location of the wings, if covered 

F I G U R E  2   Photos of individuals of the giant mesquite bug Thasus neocalifornicus illustrating different treatments in this study. Individuals 
in the comparative baseline treatment (a) were not provided with armour. Individuals in the control treatments (b) were provided with 
two 12 mm × 8 mm × 1 mm pieces of brown faux leather stacked and glued onto their pronotum. This provided the same weight as the 
experimental treatment, but was not in a location that is damaged in combat. Finally, individuals in the experimental manipulation treatment 
(c) were provided with a 12 mm × 16 mm × 1 mm piece of brown faux leather glued onto their forewings. This was intended to protect 
their forewings from damage during intraspecific male–male combat. The forewings are the site where punctures occur during intraspecific 
combat (Figure S1). Arrow in (a) indicates where individuals were uniquely identified by using paint pens and permanent markers

(a) (b) (c)
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by the artificial shield), and (d) which individual (if any) retreated 
following the interaction. Fighting in other coreid species often 
includes displaying, charging, kicking, wrapping, and grappling 
(Emberts et al., 2018). Both observers were prepared to identify 
these behaviours in Thasus neocalifornicus as well. However, most 
interactions involved only grappling, and only a few instances of 
charging were observed. Grappling is a stereotypic behaviour in 
which males ventrally align abdomen to abdomen and squeeze 
(or attempt to squeeze) one another (Videos S1 and S2). Charging 
is a swift and directed movement towards the opponent. After 
each 2-hr fighting trial, the number of retreats by each male was 
summed and the individual with the most retreats was considered 
the subordinate individual (Emberts et al., 2018; Procter et al., 
2012). In the case of ties (equal number of retreats), dominance 
was not assigned. For trials in which attacks by rivals struck the 
artificial shield, we also confirmed that the attacks did not com-
pletely puncture through the armour (i.e. that the armour pre-
vented damage from occurring). All individuals were used in only 
one trial, and were frozen immediately following their fighting 
trial. Freezing the insects allowed us to use these individuals for 
future morphological measurements.

2.3 | Statistical analyses

To test whether adding armour significantly influenced fighting 
behaviour and success we conducted a series of generalized linear 
models (GLMs). Our first model investigated whether the treat-
ment influenced the likelihood of fighting engagement between 
males. Engagement was a categorical variable, and simply indicated 
whether a fight occurred during the 2-hr trial. This model initially 
included three continuous covariates: air temperature at the start 
of the trial (34–41°C), the time of day that the fighting trial started 
(8.75–18.75 hr), and the relative difference in body size between 
the focal and rival male (−0.007–0.0085). Relative difference in 
body size was calculated by subtracting the rival male's pronotal 
width from the focal male's pronotal width and dividing this number 
by the average pronotal width of the two males. After our initial 
model was constructed, we then removed insignificant covariates in 
a stepwise fashion, starting with the covariate that had the highest 
p-value. For these analyses, we used p > 0.15 to identify insignifi-
cant covariates (i.e. being more liberal about inclusion of potential 
covariates than p > 0.05, following Bursac et al., 2008). The model 
that was ultimately selected included temperature, time, and treat-
ment as explanatory variables. The main reason we implemented 
this statistical approach was to ensure that none of the covariates 
(i.e. time, temperature, or relative size difference) altered the in-
fluence of the treatment. We also confirmed that excluding these 
covariates completely produced qualitatively similar results (see 
Section 3 and Table S1).

For our second and third analyses, we investigated whether 
treatment influenced the number of fighting interactions (discrete: 
count data) that the focal and rival males engaged in. We specifically 

conducted these analyses to determine whether armour influenced 
fighting behaviour of either the focal or rival male (e.g. Edmonds 
& Briffa, 2016). These analyses also initially included time, tem-
perature, and relative size difference as covariates. However, after 
removing insignificant covariates from the model (p > 0.15) in a step-
wise fashion, only treatment and time remained as an explanatory 
variables (for both models).

Next, we investigated whether treatment influenced focal male 
dominance (categorical: yes or no), where dominance was based on 
the individual having fewer retreats. This analysis also initially in-
cluded time, temperature, and relative size difference as covariates. 
However, after removing insignificant covariates from the model 
(p > 0.15) in a stepwise fashion, only treatment remained as an ex-
planatory variable. Given a significant result, we then performed a 
Tukey pair-wise comparison to determine which treatment was re-
sponsible for driving the observed effect.

For our fifth analysis, we investigated whether treatment in-
fluenced fighting duration (continuous). Fighting duration was 
calculated for each focal male by taking the sum of all the fighting in-
teractions that the male engaged in during its 2-hr behavioural trial. 
For this analysis we again included time, temperature, and relative 
size difference as covariates. However, we also included focal male 
body size as an additional covariate, given that contest duration is 
predicted to increase with body size under some fighting assessment 
models (Arnott & Elwood, 2009). We then performed stepwise re-
moval of insignificant covariates from the model (p > 0.15). Our fifth 
model ultimately included time and treatment as explanatory vari-
ables. Visualization of diagnostic plots suggested that this analysis 
did not meet linear model assumptions. Thus, fighting duration was 
loge transformed, and the diagnostic plots then appeared to meet 
these assumptions.

We were also able to visually confirm that the focal male was 
struck on the wings (or the location of the wings) by the rival's 
hindlimb(s) in 48 of the 150 fighting trials. If armour is actually re-
sponsible for driving differences in fighting behaviour and success, 
these 48 trials (i.e. those that clearly require defence) should have a 
major influence on driving such a pattern. Therefore, we conducted 
two additional GLMs in which we excluded fighting trials that did 
not necessarily require defence (i.e. the other 102). These tests ad-
dressed whether treatment influenced fighting duration and/or focal 
male dominance. The model for dominance initially included time, 
temperature, and relative size difference as covariates, but after re-
moving insignificant covariates (p > 0.15), only time and treatment 
were included as explanatory variables. Given a significant result, we 
again performed a Tukey pair-wise comparison to determine which 
treatment drove the observed effect. The model for fighting dura-
tion initially included time, temperature, relative size difference, and 
focal-male body size as covariates, but the final model only included 
treatment. Fighting duration was again loge transformed to meet lin-
ear model assumptions.

All analyses were conducted in R version 3.6.0 (R Core 
Team, 2019). All data and code used in this study are available on 
Dryad Digital Repository (Emberts & Wiens, 2020).
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3  | RESULTS

Out of 150 trials, 117 had at least one fighting interaction (78%). 
However, we were only able to determine the dominant male in 103 of 
the trials (69%) because 14 of these trials ended in a tie (i.e. equal num-
ber of retreats by both individuals). We found that treatment did not 
influence whether an individual engaged in a fight (χ2 = 0.804, df = 2, 
p = 0.6692, n = 150; Table S2). Moreover, when fighting did occur, 
treatment did not influence the number of interactions that an indi-
vidual engaged in (focal male analysis: χ2 = 1.160, df = 2, p = 0.5598, 
n = 117; rival male analysis: χ2 = 0.513, df = 2, p = 0.7737, n = 117; 
Tables S3 and S4). However, treatment did influence fighting outcomes 
(χ2 = 7.260, df = 2, p = 0.0265, n = 103). This latter effect was strongly 
driven by our experimental manipulation (Figure 3a). Individuals with 
wing armour were 1.6 times more likely to win fights (i.e. retreat less 
frequently) compared to those in the control treatment (proportion 

of focal male dominance was 0.743 compared to 0.457; z = 2.396, 
p = 0.0437, n = 70). Moreover, wing-armoured individuals were 1.5 
times more likely to win fights compared to those in the baseline treat-
ment (0.743 compared to 0.485; z = 2.155, p = 0.0790, n = 68), al-
though this result was not significant.

The focal male was clearly struck on the wings (or the location of 
the wings) in 48 trials, which were similarly distributed among treat-
ments (baseline = 13, control = 18, manipulation = 17). If armour is 
actually responsible for driving the observed difference in fighting 
success, these 48 trials (i.e. those that required defence) should have 
a major role in driving the pattern. Thus, we excluded from our data-
set fighting trials where it was unclear if defence was required and 
re-ran our main statistical analyses. We found that treatment signifi-
cantly influenced fighting success (χ2 = 13.775, df = 2, p = 0.0010, 
n = 48; Table S5). This effect was again strongly driven by our exper-
imental manipulation (Figure 3b). Individuals with wing armour were 

F I G U R E  3   Defensive structures influence contest outcomes. 
Experimentally manipulated males (with armour added to protect 
their wings) were more likely to win fights (i.e. be dominant) than 
males in the control treatment and males in the baseline treatment. 
This pattern was consistent regardless if all fighting interactions 
were included in the analysis (a) or just those interactions in which 
the focal male was clearly struck on the wings (or the location 
of the wings if the wings were armoured), and that therefore 
specifically required defence (b). The dashed line at 0.5 indicates 
the expected proportion of focal male dominance under random 
chance and error bars depict 95% confidence intervals. Asterisks 
indicate statistical significance between treatments

(a)

(b)

F I G U R E  4   Fighting duration was unaffected by treatment. 
This result was consistent regardless if we included all fighting 
interactions (a) or just those that clearly required defence (b). The 
boxes indicate a treatment's interquartile range, while the numbers 
in boxes indicate the median fighting duration (in seconds) for each 
treatment. Data points indicate outliers, and whiskers indicate a 
treatment's range when excluding those outliers. These outliers 
were included in the statistical analyses

(a)

(b)
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2.6 times more likely to win fights compared to those in the control 
treatment (0.824 compared to 0.313; z = 3.002, p = 0.0075, n = 35) 
and were 2.1 times more likely to win fights compared to those in the 
baseline treatment (0.824 compared to 0.385; z = 2.754, p = 0.0162, 
n = 30).

The duration of the observed fights ranged from 2 to 621 s. 
Treatment did not influence contest duration (Figure 4). This pat-
tern was consistent regardless if we included all fighting interac-
tions (F2,112 = 0.213, p = 0.8087, n = 116; Table S6) or just those that 
clearly required defence (F2,44 = 0.284, p = 0.7539, n = 47).

4  | DISCUSSION

We found that enhancing an individual's defensive capacity in-
creases their fighting success. Male Thasus neocalifornicus that were 
experimentally prevented from being injured (by their rivals) during 
intrasexual contests were 1.6 times more likely to win fights com-
pared to the control. Thus, our results demonstrate that damage (and 
defence) have important roles in determining contest outcomes. 
Most theoretical fighting models (e.g. cumulative and mutual assess-
ment models; Arnott & Elwood, 2009) have assumed this to be the 
case (Enquist & Leimar, 1983; Hammerstein & Parker, 1982; Parker 
& Rubenstein, 1981; Payne, 1998). However, the validity of this as-
sumption has not been experimentally demonstrated before.

There were two main reasons why we chose to inhibit dam-
age specifically by providing individuals with armour. First, it al-
lowed us to determine whether enhancing a potential biological 
shield (i.e. wing thickness) increased fighting success (which it did; 
Figure 3). Second, it allowed us to prevent damage without ma-
nipulating the weapons. Previous weapon removal studies have 
demonstrated that weapons have an important role in determin-
ing contest outcomes (e.g. Emberts et al., 2018; Espmark, 1964; 
Rillich et al., 2007; Yasuda et al., 2011). However, these studies 
cannot (nor do they claim to) demonstrate that damage influences 
fighting success because weapons do not solely inflict damage. 
For example, some weapons also serve as signals (McCullough 
et al., 2016), while others can be used to exclude individuals from 
a resource without causing injury (Emlen, 2008). With that said, 
weapon removal studies can also prevent damage from occurring. 
Thus, these studies remain crucial, and it is still useful to compare 
these studies with ours.

Experimentally providing one contestant with armour did not 
increase fighting duration, in contrast to our prediction. There are 
several factors that could have influenced our ability to detect this 
effect here. For this study, total fighting duration was based on the 
sum of all fighting interactions, and fighting interactions generally 
ended when one of the individuals fled. In those cases, it was the 
individual that fled that determined the length of that specific fight-
ing interaction. Since a majority of unarmoured individuals lost (i.e. 
retreated more often), it was mostly unarmoured individuals (as op-
posed to armoured individuals) contributing to the fighting duration. 
Thus, armour likely only had a small effect on the overall duration of 

the contest. Another factor to consider is that the length of fights 
was quite variable within treatments. Thus, even though armoured 
individuals spent slightly more time fighting than focal individuals 
in the other treatments (4 s longer than the control and 24 s lon-
ger than the comparative baseline; Figure 4), a much larger sample 
size would be needed to detect such a small effect. Our finding that 
armour does not substantially increase contest duration is consis-
tent with the results of weapon removal studies in which only one 
contestant has their weapons removed (Emberts et al., 2018; Rillich 
et al., 2007). However, when both contestants have their weap-
ons removed, fighting duration has been shown to increase (Rillich 
et al., 2007). Thus, future studies that aim to determine whether 
damage per se influences the length of fights should compare the 
fighting duration of contests where both individuals are armoured to 
those in which both individuals are unarmoured.

All theoretical models of fighting assume that contestants 
gather information regarding the costs and benefits of persisting. 
However, these models vary in the exact type of information that 
a contestant is thought to gather (Arnott & Elwood, 2009). Both 
cumulative and mutual assessment models assume that the costs 
individuals can inflict onto one another (e.g. damage) are import-
ant factors in determining whether each individual should persist 
(Enquist & Leimar, 1983; Hammerstein & Parker, 1982; Parker & 
Rubenstein, 1981; Payne, 1998). Here, we provide experimental sup-
port for this assumption. However, damage can also be self-inflicted 
(Lane & Briffa, 2017). For example, the antlers of deer can break 
during high intensity fights (Alvarez, 1993; Lane & Briffa, 2017). In 
such cases, damage could also influence how long an individual is 
willing to persist in a fight even when models assume that fighting 
costs are only self-imposed, as in the ‘war of attrition without assess-
ment’ model (Mesterton-Gibbons et al., 1996). This is considered a 
pure-self assessment model (Arnott & Elwood, 2009). Thus, the cost 
of damage (in its broadest sense) may influence contest outcomes 
under self, cumulative and mutual assessment models.

We focused here on defensive structures that reduce damage 
(e.g. Table 1; Figure 1), but there are other ways that defensive 
structures can limit the effectiveness of a rival's weapon. For ex-
ample, a defensive structure can make it harder for an individual to 
be removed from a resource (e.g. Benowitz et al., 2012) or they may 
make it more difficult for an individual to be reached during the fight 
(e.g. Eberhard et al., 2000). A particularly compelling example of re-
moval resistance involves the grip strength of forked fungus beetles, 
Bolitotherus cornutus (Benowitz et al., 2012). Males of this species 
mate guard by standing on top of the female (Liles, 1956). Thus, rival 
males must use their clypeal horn to physically pry guarding males 
off of the female before attempting to mate (Benowitz et al., 2012). 
Therefore, grip strength and leg size are important factors that pre-
vent the effectiveness of a rival's weapon in this system. Overall, 
intrasexual, defensive structures may take on many forms and fu-
ture work should continue to quantify their diversity and prevalence 
throughout Animalia.

In summary, we investigated whether enhancing an individual's 
armour influenced fighting behaviour and success. We found that 
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experimentally manipulated individuals (i.e. those provided with ar-
mour) gained a 60% increase in fighting success when compared to 
the control individuals. This result demonstrates that damage can 
have an important role in determining contest outcomes. Thus, this 
result experimentally supports a fundamental assumption of many 
theoretical fighting models. Although damage has long been con-
sidered an important component of contest outcomes (e.g. Smith 
& Price, 1973), damage-reducing structures (i.e. biological shields) 
have largely been overlooked. These defensive structures are tax-
onomically widespread (Table 1), may show considerable variation 
within species (Figure S1), and can significantly influence contest 
outcomes (Figure 3). Thus, our results highlight the need to further 
investigate the evolutionary ecology of these defensive structures.
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